首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.  相似文献   

2.
Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep‐eutectic‐solvent‐based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents‐based materials is expected to diversify into extraction and separation.  相似文献   

3.
Polyethylene glycol (PEG) is an industrial commodity produced for applications foremost in the medial and personal care business. This review focuses on the much less explored application of using PEG as a chemical solvent. This review highlights some of the successful chemical synthesis strategies to illustrate the advantages of using PEG as an environmentally friendly reaction medium. These advantages include its ability to (a) dissolve a wide range of chemicals including mineral salts, (b) serve as a catalyst because of its acid/base functionalities, (c) complex metal cations, and (d) engage in redox chemistry. New developments of combining PEG with other green solvents and/or functionalizing PEGs are covered as well. The present state of physicochemical studies of PEG as a solvent is also provided and clearly shows the need for future research in this area to further promote the effective use of PEG as a medium for chemistry.  相似文献   

4.
Natural deep eutectic solvents (NADESs) are defined as mixtures of certain molar ratios of natural compounds such as sugars, organic acids, amino acids, and organic bases that are abundant in organisms. The melting points of these mixtures are considerably lower than those of their individual ingredients and far below ambient temperature. The first publications on the NADES concept in 2011 created a great expectation regarding their potential as green solvents that could replace conventional organic solvents in a wide range of applications. This was largely because many of the drawbacks of conventional synthetic ionic liquids (ILs) and deep eutectic solvents (DESs), particularly their toxicity and environmental hazards, could be solved using NADESs. Throughout the last 7 years, the interest in NADESs has increased enormously as reflected by the exponential growth of the number of related publications. The research on NADESs has rapidly expanded particularly into the evaluation of the feasibility of their application in diverse fields such as the extraction of (targeted) bioactive compounds from natural sources, as media for enzymatic or chemical reactions, preservatives of labile compounds, or as vehicles of non–water-soluble compounds for pharmaceutical purposes. Along with the exploration of these potential applications, there have been a large number of other studies related to their physicochemical features, the search for new NADESs, the research into the interactions between NADES components or with solutes, the recovery of solutes from NADES solutions, and the ways of circumventing inherent problems of NADESs such as their high viscosity and the consequent difficulties in handling them. This article contains a review of the applications of NADESs as extraction solvents, reaction media, and preservative, providing also a perspective of their future.  相似文献   

5.
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.  相似文献   

6.
Deep eutectic solvents (DESs) were applied as eco-friendly solvents in this study for the extraction of alkaloids from lotus leaf, including O-nornuciferine, N-nornuciferine, nuciferine and roemerine. A series of hydrophilic and hydrophobic DESs with different hydrogen bond donors and a acceptors were synthesized and screened for a suitable DESs for extraction of alkaloids from lotus leaf. The study results showed that the hydrophilic DES with choline chloride and propanediol had the highest extraction yield. The main factors affecting the extraction efficiency—choline chloride–propanediol ratio, water content in deep eutectic solvents, solid–liquid ratio and extraction time—were investigated via a single-factor experiment. The optimized extraction conditions were 30% of water in choline chloride–propanediol (1:4) for heated extraction for 30 min and solid–liquid ratio 1:100 g/ml. Under optimum conditions, the extraction yields of O-nornuciferine, N-nornuciferine, nuciferine and roemerine were 0.069, 0.152, 0.334 and 0.041 g/100 g respectively, which were higher than those of methanol in acidified aqueous solution. This study suggests considerable potential for DESs as promising materials for the green and efficient extraction solvents for bioactive alkaloids from natural sources.  相似文献   

7.
低共熔溶剂是两种或多种固体或液体物质通过氢键相互作用形成的液体溶剂,其熔点明显低于单一组分的熔点。与传统离子液体相比,低共熔溶剂成本更低,制备更容易,可生物降解,具有100%原子利用率和生物相容性及无毒无害等绿色特性,这些优点使其在许多研究领域被广泛研究。本文介绍了低共熔溶剂的最新分类,综述了低共熔溶剂在电化学、气体吸收、有机合成、功能材料合成、萃取分离、药物增溶及生物质预处理中的应用,并对低共熔溶剂的未来发展进行了展望。  相似文献   

8.
离子液体作为酶催化反应的介质正越来越多的受到关注,因为与传统有机溶剂和水相比,酶在离子液体中表现出了更好的活性、热稳定性、立体选择性、对映体选择性和可循环性。本文综述了近几年来脂肪酶、氧化还原酶、蛋白酶在离子液体中的催化反应。  相似文献   

9.
In recent years, it has been found that changing ambient conditions (CO2/N2, temperature, pH) can trigger a switchable phase transition of deep eutectic solvents, and such solvents are known as responsive deep eutectic solvents. In this work, we present the development history, properties, and preparation of responsive deep eutectic solvents, followed by the application of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are presented. Importantly, the mechanism of responsive deep eutectic solvents in the extraction of bioactive compounds is discussed. Finally, the challenges and prospects of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are proposed. Responsive deep eutectic solvents are considered green and efficient solvents. Some methods for extraction and separation of bioactive compounds by responsive deep eutectic solvents can increase the possibility of recycling the deep eutectic solvents, and provide higher efficiency in the extraction and separation field. It is hoped that this will provide a reference for the green and sustainable extraction and separation of various bioactive compounds.  相似文献   

10.
A green and novel procedure is described for the preparation of a series of ionic liquid containing alkylimidazolium-based or N-alkylpyridinium-based cations and hexafluorophosphate-based or tetrafluoroborate-based anions in one-pot solvent-free conditions to give excellent yields with shortened time.  相似文献   

11.
As a new environmentally friendly separation technology, deep eutectic solvent based aqueous two‐phase systems are extensively applied in various fields. Herein, we review recent advances in this field and highlight the possible directions of future developments. This article focuses on the effects of deep eutectic solvent and inorganic salts on the phase equilibrium, the microstructure of deep eutectic solvent based aqueous two‐phase systems, the applications of deep eutectic solvent based aqueous two‐phase systems in separation (proteins, biopolymers, saponins, and organic acids), and removal and recovery technologies for deep eutectic solvent from aqueous two‐phase systems.  相似文献   

12.
A series of room-temperature ternary deep eutectic solvents(TDESs) were prepared from imidazolium halides, zinc halides and amides. The [BMIM]Cl–ZnCl2 –acetamide(1:1:1) system shows the lowest freezing point( 60 8C) and lowest density in the series. The viscosity and conductivity of TDESs have an exponential relationship with temperature and can be fitted by Arrhenius equation.  相似文献   

13.
Bukuo Ni 《Tetrahedron letters》2007,48(11):1999-2002
Six novel imidazolium salts, which contain a chiral moiety as well as a fused-ring system, have been designed, synthesized, and fully characterized. The synthesis of these ionic liquids is concise and practical due to the commercial availability of the starting materials. These imidazolium compounds were readily prepared from 1-methyl-2-imidazoliumcarboxaldehyde and chiral amino alcohols. Salts that contain the PF6 anion were solids, but salts with the NTf2 anion were liquids at room temperature. We envision that these new chiral imidazolium compounds can serve as effective reaction media as well as chiral catalysts for asymmetric reactions, which are presently being investigated in our lab.  相似文献   

14.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

15.
《印度化学会志》2021,98(11):100210
Organic solvents have been of great importance for many chemical synthesis, storage and separation processes. The industries and research laboratories are heavily dependent on organic solvents in bulk; are highly volatile, lipophilic, toxic and causes a number of issues to the human health and the environmental fitness. Neoteric solvents have been proposed as a better substitute to these harmful organic solvents, and scientists have come up with several neoteric solvents in the last three decades, to name a few: ionic liquids (ILs), switchable solvents, bio-based solvents and deep eutectic solvents (DESs). These neoteric solvents attract a great deal of interest from the scientific community due to plenty of possibilities, therefore, they have huge impact and novel studies are reported quite frequently on the same. In this review, we intend to focus to brief on deep eutectic solvents, about their properties, synthesis, promising applications, and how they gradually emerged from ILs and later stood out as a different class of neoteric solvent, which overcomes many shortcomings of ILs. DESs are possibly receptive synthetic compounds and their relationship based on the hydrogen bond donor or acceptor restricts their reactivity and allow to explore in different disciplines of science.  相似文献   

16.
A homogeneous liquid–liquid microextraction alternative, based on the use of switchable hydrophilicity solvents, is presented. The extraction technique makes use of 125 μL of a water‐immiscible solvent (N,N‐dimethylcyclohexylamine) that can be solubilized in the aqueous phase in 1:1 ratio using CO2 as a reagent. After the extraction, phase separation is induced by the addition of sodium hydroxide that produces a change on the ionization state of the amine, and centrifugation was not necessary. The extraction technique has been optimized and characterized using the determination of triazine herbicides by gas chromatography with mass spectrometry in water samples. The presence of metallic ions in environmental waters as interferents is easily avoided by the addition of ethylenediaminetetraacetic acid before the microextraction procedure. The proposed method allows the determination of the target analytes at the low microgram per liter range with good precision (relative standard deviation lower than 12.5%).  相似文献   

17.
In this work, the phase behaviour of the binary system of carbon dioxide and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been studied experimentally. The equipment used for the experiments is the Cailletet set-up, based on visual observations of phase transitions of systems with constant overall composition. Results are reported for carbon dioxide concentrations ranging from 12.3 to 59.3 mol%, and within temperature and pressure ranges of 310–450 K and 0–15 MPa, respectively. The data reveal an extremely high capacity of the selected ionic liquid for dissolving CO2 gas, for example, reaching up to about 60 mol% within the above-mentioned pressure and temperature range. Also, the solubility of CO2 in the ionic liquid [emim][Tf2N] is compared to the solubility of CO2 in the ionic liquid [emim][PF6], an ionic liquid that shares the same cation.  相似文献   

18.
19.
本文通过一步合成法合成了四种不同摩尔比的四乙基氯化胺-乙醇胺低共熔溶剂(TEAC-MEA DES)。红外光谱表征分析表明该DES是依靠氢键作用而形成的;DES的热稳定性高于MEA,且随着MEA的比例的增加而降低;对不同比例的DES进行了四次循环CO2吸收-解吸实验,发现其吸收容量几乎不变,重复使用性能较好。在不同温度下计算了化学平衡常数,lnK对1/T线性拟合结果表明DES吸收CO2的反应焓是负值,即吸收CO2的反应是放热过程。该DES在吸收CO2方面具有很大的潜力。  相似文献   

20.
Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel‐type ferrite nanoparticles MFe2O4 (M=Mg, Zn, Co, Ni). The best results for phase‐pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid‐phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase‐pure spinel‐type ferrite particles are thoroughly characterized by X‐ray diffraction, diffuse‐reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号