首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ruthenium(II)-supported heteropolyanions [HXW7O28Ru(dmso)3]6-(X=P, 1; As, 2) are composed of a Ru(dmso)3 group attached to an unprecedented heptatungstate fragment via two Ru-O-W bonds and one Ru-O-X bond, which represents a fundamentally novel mode of Ru-coordination to a polyoxoanion framework. Multinuclear 183W, 31P, 13C, and 1H NMR studies indicate high stability of 1 and 2 in solution.  相似文献   

2.
The novel Ru(II)-supported heteropolytungstates [Ru(dmso)(3)(H(2)O)XW(11)O(39)](6-)(X = Ge, Si) have been synthesized and characterized by single-crystal X-ray diffraction, multinuclear NMR ((183)W, (13)C, (1)H, (29)Si) and IR spectroscopy, elemental analysis and electrochemistry. The novel polyanion structure consists of a Ru(dmso)(3)(H(2)O) unit linked to a monolacunary [XW(11)O(39)](8-) Keggin fragment via two Ru-O-W bonds resulting in an assembly with C(1) symmetry. Polyanions 1 and 2 were synthesized by reaction of cis-Ru(dmso)(4)Cl(2) with [A-alpha-XW(9)O(34)](10-) in aqueous, acidic medium (pH 4.8). Tungsten-183 NMR of 1 leads to a spectrum with 11 peaks of equal intensity, indicating that the solid-state structure is preserved in solution. Electrochemistry studies revealed that 1 and 2 are stable in solution at least from pH 0 to 7, even in the presence of dioxygen. Their cyclic voltammetry patterns show mainly two two-electron reversible W-waves, those of the Si derivative 2 being located at slightly more negative potentials than those of the Ge derivative 1. The observed stability of 1 and 2 might be attributed to a stabilization of the Ru-center both by the strongly bound dmso ligands and the Keggin moiety. This stabilization drives the redox waves of Ru outside the accessible potential range. However, conditions were found to reveal, at least partially, the redox behavior of Ru in 1 and 2.  相似文献   

3.
The polyanions [Cr(2)(AsMo(7)O(27))(2)](12-) () or [Cu(2)(AsMo(7)O(27))(2)](14-) () have sandwich-like structures wrapping two transition metals between two [As(iii)Mo(7)O(27)](9-) fragments, and the fragment is unprecedented and can be viewed as a mono-capped hexavacant B-alpha-Keggin subunit with a central AsO(3) group.  相似文献   

4.
In aqueous solutions under mild conditions, [Ru(H(2)O)(6)](2+) was reacted with various water-soluble tertiary phosphines. As determined by multinuclear NMR spectroscopy, reactions with the sulfonated arylphosphines L =mtppms, ptppms and mtppts yielded only the mono- and bisphosphine complexes, [Ru(H(2)O)(5)L](2+), cis-[Ru(H(2)O)(4)L(2)](2+), and trans-[Ru(H(2)O)(4)L(2)](2+) even in a high ligand excess. With the small aliphatic phosphine L = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1(3,7)]decane (pta) at [L]:[Ru]= 12:1, the tris- and tetrakisphosphino species, [Ru(H(2)O)(3)(pta)(3)](2+), [Ru(H(2)O)(2)(pta)(4)](2+), [Ru(H(2)O)(OH)(pta)(4)](+), and [Ru(OH)(2)(pta)(4)] were also detected, albeit in minor quantities. These results have significance for the in situ preparation of Ru(II)-tertiary phosphine catalysts. The structures of the complexes trans-[Ru(H(2)O)(4)(ptaMe)(2)](tos)(4)x2H(2)O, trans-[Ru(H(2)O)(4)(ptaH)(2)](tos)(4)[middle dot]2H(2)O, and trans-mer-[RuI(2)(H(2)O)(ptaMe)(3)]I(3)x2H(2)O, containing protonated or methylated pta ligands (ptaH and ptaMe, respectively) were determined by single crystal X-ray diffraction.  相似文献   

5.
The novel heteropolyanion [Cu(4)K(2)(H(2)O)(8)(alpha-AsW(9)O(33))(2)](8)(-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic studies. Single-crystal X-ray analysis was carried out on [K(7)Na[Cu(4)K(2)(H(2)O)(6)(alpha-AsW(9)O(33))(2)].5.5H(2)O](n)(K(7)Na-1), which crystallizes in the tetragonal system, space group P42(1)m, with a = 16.705(4) A, b = 16.705(4) A, c = 13.956(5) A, and Z = 2. Interaction of the lacunary [alpha-AsW(9)O(33)](9)(-) with Cu(2+) ions in neutral, aqueous medium leads to the formation of the dimeric polyoxoanion 1 in high yield. Polyanion 1 consists of two alpha-AsW(9)O(33) units joined by a cyclic arrangement of four Cu(2+) and two K(+) ions, resulting in a structure with C(2)(v)() symmetry. All copper ions have one terminal water molecule, resulting in square-pyramidal coordination geometry. Three of the copper ions are adjacent to each other and connected via two micro(3)-oxo bridges. EPR studies on K(7)Na-1 and also on Na(9)[Cu(3)Na(3)(H(2)O)(9)(alpha-AsW(9)O(33))(2)].26H(2)O (Na(9)-2) over 2-300 K yielded g values that are consistent with a square-pyramidal coordination around the copper(II) ions in 1 and 2. No hyperfine structure was observed due to the presence of strong spin exchange, but fine structure was observed for the excited (S(T) = 3/2) state of Na(9)-2 and the ground state (S(T) = 1) of K(7)Na-1. The zero-field (D) parameters have also been determined for these states, constituting a rare case wherein one observes EPR from both the ground and the excited states. Magnetic susceptibility data show that Na(9)-2 has antiferromagnetically coupled Cu(2+) ions, with J = -1.36 +/- 0.01 cm(-)(1), while K(7)Na-1 has both ferromagnetically and antiferromagnetically coupled Cu(2+) ions (J(1) = 2.78 +/- 0.13 cm(-)(1), J(2) = -1.35 +/- 0.02 cm(-)(1), and J(3) = -2.24 +/- 0.06 cm(-)(1)), and the ground-state total spins are S(T) = 1/2 in Na(9)-2 and S(T) = 1 in K(7)Na-1.  相似文献   

6.
Original and simple procedures for glassy carbon electrode modification with polyoxometalates (POMs), phosphotungstate [H7P8W48O184]33-, and Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(beta-SiW8O31)3}]5- and [{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29OH)2}2]22- give stable and very active surfaces for the hydrogen-evolution reaction (HER). For this purpose, the selected POMs fixed on Vulcan XC-72 were adsorbed on the electrode surface or were directly entrapped in polyvinylpyridine films on the electrode. Cyclic voltammetry and confocal microscopy results converge to indicate that the activation is related to the proton and electron reservoir-like behaviors of these molecular oxides and not to any electrode surface area increase. However, the Tafel parameters of the HER process, which are different from one POM to the next, are in the range of those of the best metallic electrodes.  相似文献   

7.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

8.
The benzene-Ru(II)-supported dilacunary decatungstosilicate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)]4- and the isostructural decatungstogermanate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)]4- have been synthesized and characterized by multinuclear solution NMR, IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)].9H2O (K-1), which crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6702(3) A, b = 16.2419(4) A, c = 12.1397(2) A, and Z = 2, and on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)].7H2O (K-2), which also crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6684(12) A, b = 16.297(2) A, c = 12.1607(13) A, and Z = 2. Polyanions 1 and 2 consist of a Ru(C6H6)(H2O) group and a Ru(C6H6) group linked to a dilacunary (gamma-XW10O36) Keggin fragment resulting in an assembly with idealized Cs symmetry. The Ru(C6H6)(H2O) group is bound at the lacunary polyanion site via two Ru-O(W) bonds, whereas the Ru(C6H6) group is bound on the side via three Ru-O(W) bonds. Polyanions 1 and 2 were synthesized in aqueous acidic medium at pH 2.5 by the reaction of [Ru(C6H6)Cl2]2 with [gamma-SiW10O36]8- and [gamma-GeW10O36]8-, respectively. The formal potentials are roughly the same for the first W waves of 1 and 2. However, important differences appear for the second W waves. These observations indicate different acid-base properties for the reduced forms of 1 and 2. Three oxidation processes were detected: the oxidation of the Ru center is followed first by irreversible electrocatalytic processes of the Ru-benzene moiety and then of the electrolyte. Comparison of this behavior with that of the precursor reagent, [Ru(C6H6)Cl2]2, was useful to understand the main oxidation processes. A ligand substitution reaction was observed upon addition of dimethyl sulfoxide (dmso) to 1, 2, or [Ru(C6H6)Cl2]2. This reaction facilitates substantially the oxidation of the Ru center. The dmso was oxidized with large electrocatalytic currents more efficiently in the presence of 1 and 2 than with [Ru(C6H6)Cl2]2.  相似文献   

9.
The kinetics and mechanism of the [Ru(III)(edta)(H(2)O)](-)-mediated oxidation of cysteine (RSH) by hydrogen peroxide (edta(4-) = ethylenediaminetetraacetate), were studied in detail as a function of both the hydrogen peroxide and cysteine concentrations at pH 5.1 and room temperature. The kinetic traces reveal clear evidence for a catalytic process in which hydrogen peroxide reacts directly with cysteine coordinated to the Ru(III)(edta) complex in the form of [Ru(III)(edta)SR](2-). A parallel process in which [Ru(III)(edta)(H(2)O)](-) first reacts with H(2)O(2) to produce [Ru(V)(edta)O](-) and subsequently oxidizes cysteine, is orders of magnitude slower than the [Ru(III)(edta)(H(2)O)](-)-mediated oxidation in which cysteine rapidly coordinates to [Ru(III)(edta)(H(2)O)](-) prior to the reaction with H(2)O(2). HPLC product analyses revealed the formation of cystine (RSSR) as major product along with cysteine sulfinic acid (RSO(2)H) in the reaction system, and established the catalytic role of [Ru(III)(edta)(H(2)O)](-). Simulations were performed to account for the rather complex kinetic traces in terms of the suggested reaction mechanism. The results of the simulations support the proposed reaction mechanism that involves the oxidation of coordinated cysteine to cysteine sulfenic acid (RSOH), which subsequently rapidly reacts with H(2)O(2) and RSH to form RSO(2)H and RSSR, respectively.  相似文献   

10.
11.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds.  相似文献   

12.
13.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

14.
A cyanide-bridged molecular square of [Ru(II) (2)Fe(II) (2)(mu-CN)(4)(bpy)(8)](PF(6))(4).CHCl(3).H(2)O, abbreviated as [Ru(II) (2)Fe(II) (2)](PF(6))(4), has been synthesised and electrochemically generated mixed-valence states have been studied by spectroelectrochemical methods. The complex cation of [Ru(II) (2)Fe(II) (2)](4+) is nearly a square and is composed of alternate Ru(II) and Fe(II) ions bridged by four cyanide ions. The cyclic voltammogram (CV) of [Ru(II) (2)Fe(II) (2)](PF(6))(4) in acetonitrile showed four quasireversible waves at 0.69, 0.94, 1.42 and 1.70 V (vs. SSCE), which correspond to the four one-electron redox processes of [Ru(II) (2)Fe(II) (2)](4+) right arrow over left arrow [Ru(II) (2)Fe(II)Fe(III)] (5+) right arrow over left arrow [Ru(II) (2)Fe(III) (2)](6+) right arrow over left arrow [Ru(II)Ru(III)Fe(III) (2)](7+) right arrow over left arrow [Ru(III) (2)Fe(III) (2)](8+). Electrochemically generated [Ru(II) (2)Fe(II)Fe(III)](5+) and [Ru(II) (2)Fe(III) (2)](6+) showed new absorption bands at 2350 nm (epsilon =5500 M(-1) cm(-1)) and 1560 nm (epsilon =10 500 M(-1) cm(-1)), respectively, which were assigned to the intramolecular IT (intervalence transfer) bands from Fe(II) to Fe(III) and from Ru(II) to Fe(III) ions, respectively. The electronic interaction matrix elements (H(AB)) and the degrees of electronic delocalisation (alpha(2)) were estimated to be 1090 cm(-1) and 0.065 for the [Ru(II) (2)Fe(II)Fe(III) (2)](5+) state and 1990 cm(-1) and 0.065 for the [Ru(II) (2)Fe(III) (2)](6+) states.  相似文献   

15.
A new molecular oxide, [(IMo(7)O(26))(2)](6)(-), that has a self-contained structure has been synthesized. Its structural relevance both to the rutile structure and several molecular oxides that had been classified as "strange ones with odd structures" has given some insights as to why those species assume such structures. The novel yet self-contained nature of the structure suggests the existence of a new class of molecular oxides of related structures.  相似文献   

16.
The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands.  相似文献   

17.
The palladium(II)-substituted tungstosilicate [Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)](9)(-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)K(2)Na(4)[Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)].5H(2)O (1a), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 16.655(3) A, b = 19.729(4) A, c = 25.995(5) A, beta = 95.46(3) degrees , and Z = 4. Polyanion 1represents the first structurally characterized palladium(II)-substituted tungstosilicate. The title polyanion consists of two (A-alpha-SiW(9)O(34)) Keggin moieties linked via a [WO(H(2)O)](4+) group and two equivalent, square-planar Pd(2+) ions leading to a sandwich-type structure with C(2)(v) symmetry. The central belt of 1 contains also one potassium and two cesium ions. Polyanion 1 was synthesized by reaction of Pd(CH(3)COO)(2) with K(10)[A-alpha-SiW(9)O(34)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium shows a Pd(0) deposition process on the glassy carbon electrode surface. The corresponding wave and that of tungsten redox processes could be separated clearly during the first few runs before their merging into a broad composite wave. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. As judged from hydrogen sorption/desorption pattern, the quality of the film deposited from polyanion 1 is better than that of a film deposited directly from Pd(2+) solutions.  相似文献   

18.
19.
Deeth RJ  Elding LI 《Inorganic chemistry》1996,35(17):5019-5026
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol.  相似文献   

20.
H Fei  CS Han  SR Oliver 《Inorganic chemistry》2012,51(16):8655-8657
An extended metal oxide possessing a cationic charge on the host has been synthesized by hydrothermal methods. The structure consists of 1D antimony oxide [Sb(6)O(7)](4+) chains with a new structural motif of four Sb atoms wide and unprotonated sulfate anions between the chains. The material was characterized by powder and single-crystal X-ray diffraction. Thermal behavior and chemical resistance in aqueous acidic conditions (pH ~2) indicate a highly stable cationic material. The stability is attributed to the entirely inorganic composition of the structure, where 1D covalently extended chains are electrostatically bound to divalent anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号