首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

2.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

3.
The electrical conductivity of the crystallized polyphosphates Li3Ba2(PO3)7, LiPb2(PO3)5, LiCs(PO3)2, and αLiK(PO3)2 has been determined at different temperatures by impedance spectroscopy. The conductivity, σ, spreads within a range of 1.59 × 10−8 to 1.79 × 10−7 S cm−1 at 573 K, and from 1.71 × 10−5 to 9.86 × 10−4 S cm−1 at 773 K. The transport should be assumed in the majority by the lithium ions with regard to the structural characteristics of these polyphosphates. The results are discussed and compared to the conductivity properties of other lithium ion conductors.  相似文献   

4.
A new iron hydrogen phosphate, heptairon bis­(phosphate) tetrakis­(hydrogen­phosphate), Fe7(PO4)2(HPO4)4, has been prepared hydro­thermally and characterized by single‐crystal X‐ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn7(PO4)2(HPO4)4 and Co7(PO4)2(HPO4)4. The structure is based on a framework of edge‐ and corner‐sharing FeO6, Fe5 and PO4 polyhedra, isotypic with that found in the mixed‐valence iron phosphate Fe7(PO4)6. The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co7(PO4)2(HPO4)4, the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe—OH—P groups.  相似文献   

5.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   

6.
The enthalpies of the solution of MZr2(PO4)3(M=Na, K, Rb or Cs) compounds have been measured by the help of a differential automatic isothermal Calvet calorimeter and the standard enthalpies of formation have been derived. The temperature dependencies of the standard heat capacity of the samples of crystalline NaZr2(PO4)3 and CsZr2(PO4)3 were studied between 7 and 340 K in an automatic adiabatic vacuum calorimeter. The main thermodynamic functions H 0(T)–H 0(0), S 0(T) andG 0(T)–H 0(0) have been determined. The Gibbs energies of formation of the NaZr2(PO4)3and CsZr2(PO4)3 at 298.15 K were calculated on the basis of these experimental data and the enthalpy of formation data. Qualitative explanations for the results observed were presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Na5AlF2(PO4)2: Synthesis, Crystal Structure and Ionic Conductivity Two different procedures (precipitation from aqueous solution and solid state reaction) for the synthesis of hitherto unknown Na5AlF2(PO4)2 were optimized. The crystal structure was determined using diffractometer data (P3 , a = b = 10.483(1), c = 6.607(1) Å, MoKα, 1080 independent reflections, Rw = 0.025). PO4-tetrahedra and AlO4F2-“octahedra” are connected via common vertices forming a twodimensionally extended heteropolyanion. Sodium is located in interconnected spacings of the [AlF2(PO4)2]-part of the structure. Ionic conductivity as expected because of these structural features was affirmed experimentally.  相似文献   

8.
Carbon coated and carbon free Li3V2(PO4)3 cathode materials were prepared by carbothermal reduction and H2 reduction methods, respectively. The carbon free material had a grain size about 1 μm whereas the carbon coated material was less than 100 nm. The surface carbon layer enhanced the electronic conductivity of Li3V2(PO4)3 by five orders of magnitude. In addition, the surface carbon layer also prevented the formation of SEI film, decreased the charge transfer resistance and increased the chemical diffusion coefficient of Li+ ions. All of these advantages improved the electrochemical performance of Li3V2(PO4)3. As most of intercalation materials, the low temperature performance of Li3V2(PO4)3 was poorer than that at room temperature. This was attributed to the electrochemical sluggish kinetics which caused higher charge transfer resistance and smaller chemical diffusion coefficient. The carbon coating technique was effective to eliminate these sluggish kinetics, and then improved the low temperature performance of Li3V2(PO4)3.  相似文献   

9.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

10.
The liquid-solid phase diagram of the binary systems AlPO4?M3PO4(M=Li, Na, K) have been established. The additional compounds Na3Al(PO4)2, Na3Al2(PO4)3 and K3Al2(PO4)3 have been found again. A new compound K3Al(PO4)2 is observed. The melting point of Na3PO4 is 1545°C and K3PO4 does not melt up to 1700°C.  相似文献   

11.
The structures of tripotassium digallium tris(phosphate), K3Ga2(PO4)3, and trisodium gallium bis(phosphate), Na3Ga(PO4)2, have different irregular one‐dimensional alkali ion‐containing channels along the a axis of the orthorhombic and triclinic unit cells, respectively. The anionic subsystems consist of vortex‐linked PO4 tetrahedra and GaO4 tetrahedra or GaO5 trigonal bipyramids in the first and second structure, respectively.  相似文献   

12.
Subsolidus sections in the systems Li3PO4-InPO4 (950°C) and Na3PO4-InPO4 (800, 900, and 1000°C) have been studied by X-ray powder diffraction. The compound Li3In(PO4)2 has been synthesized, and the nasicon-type solid solution Li3(1 ? x)In2 + x(PO4)3 (0.67 ≤ x ≤ 0.80). has been found to exist. In the system Na3PO4-InPO4, the solid solution Na3(1 ? x)Inx/3PO4 (0 ≤ x ≤ 0.2) and two complex phosphates exist: Na3In(PO4)2 and Na3In2(PO4)3. These complex phosphates are dimorphic, with the irreversible-transition temperature equal to 675 and 820°C, respectively. Na3In(PO4)2 degrades at 920°C. Ionic conductivity has been measured in some phases in the system.  相似文献   

13.
The MIPO3Sm(PO3)3(MI = Li, Na, Ag) systems were studied. Differential thermal analysis and X-ray diffraction were used to investigate the liquidus and solidus relations. Three compounds LiSm(PO3)4, NaSm(PO3)4, and AgSm(PO3)4 were obtained which melt incongruently at 1248, 1143, and 1078 K, respectively. These compounds are isomorphous with their homologs LiLn(PO3)4, NaLn(PO3)4, AgLn(PO3)4 (Ln = Ce, La, Nd). They belong to the monoclinic system. The LiSm(PO3)4 unit cell parameters refined by least squares method are a = 16.43(3) Å, b = 7.16(1) Å, c = 9.65(3) Å, β = 125,9°(1), with the space group C2c and Z = 4. NaSm(PO3)4 and AgSm(PO3)4 are isotypic; they cristallize in the P21c space group, Z = 4; their unit cell parameters are, respectively, a = 12.18(1) Å, b = 13.05(1) Å, c = 7.25(5) Å, β = 126,53°(4), a = 12.25(1)A?, b = 13.06(1) Å, c = 7.201(9) Å, β = 126,57°(7). The ir spectra of the last two compounds indicate that these phosphates are chain phosphates.  相似文献   

14.
Composite polymer electrolyte (CPE) films consisting of PEO, LiClO4, and Li1.3Al0.3Ti1.7(PO4)3 with fixed EO/Li = 8 but different relative compositions of the two lithium salts were prepared by the solution casting method. The CPE films were characterized using SEM, DSC, electrical impedance spectroscopy (EIS), and ion transference number measurement. It was found that the incorporation of LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 into PEO by keeping EO/Li = 8 reduced the crystallinity of PEO from 50.34% to the range of 3.57–15.63% depending upon the relative composition of the two salts. The room temperature impedance spectra of the CPE films all exhibited a shape of depressed semicircle in the high frequency range and inclined line in the low frequency range, but the high temperature ones were mainly inclined lines. The Li+ ionic conductivity of the CPE films mildly increased and then decreased with increasing Li1.3Al0.3Ti1.7(PO4)3 content, and the maximum conductivities were obtained at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt % for all measuring temperatures, for example, 1.378 × 10?3 S/cm at 100 °C and 1.387 × 10?5 S/cm at 25 °C. The temperature dependence of the ionic conductivity of the CPE films follows the Vogel–Tamman–Fulcher (VTF) equation The pseudo activation energies (Ea) were rather low, 0.053–0.062 eV, indicating an easy migration of Li+ in the amorphous phase dominant PEO. The pre‐exponent constant A and ion transference number tLi+ were found to have a similar variation tendency with increasing Li1.3Al0.3Ti1.7(PO4)3 content and reached their maximums also at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 743–751, 2005  相似文献   

15.
Two new mixed‐valence iron phosphates, namely heptairon pentaphosphate hydrogen phosphate, Fe6.67(PO4)5.35(HPO4)0.65, and heptairon tetraphosphate bis(hydrogen phosphate), Fe6.23(PO4)4.45(HPO4)1.55, have been synthesized hydrothermally at 973 K and 0.1 GPa. The structures are similar to that of FeII3FeIII4(PO4)6 and are characterized by infinite chains of Fe polyhedra parallel to the [101] direction. These chains are formed by the Fe1O6 and Fe2O6 octahedra, alternating with the Fe4O5 distorted pentagonal bipyramids, according to the stacking sequence ...Fe1–Fe1–Fe4–Fe2–Fe2.... The Fe3O6 octahedra and PO4 tetrahedra connect the chains together. FeII is localized on the Fe3 and Fe4 sites, whereas FeIII is found in the Fe1 and Fe2 sites, according to bond‐valence calculations. Refined site occupancies indicate the presence of vacancies on the Fe4 site, explained by the substitution mechanism FeII + 2(PO43−) = vacancies + 2(HPO42−).  相似文献   

16.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

17.
Mixtures of CaHPO4, CaCO3, and Na2CO3 were heated at 870°C under steam or under dry CO2 until phase composition and weight were constant. According to chemical analysis and X-ray diffractometry the stability field of the β-Ca3(PO4)2 phase is limited by the molar P/Ca ratio of 0.664 ± 0.003 and 0.675 ± 0.010 irrespective of the partial water vapour pressure. A continuous series of solid solutions was found between β-Ca3(PO4)2 and a new whitlockite with the composition Ca10Na(PO4)7. The IR spectrum of these solid solutions shows that the point symmetry of the PO4 groups and their environment increases with increasing sodium content. This is in agreement with data published about the structure of β-Ca3(PO4)2 and whitlockite. The composition of these solid solutions suggests that Na+ ions can replace H+ ions in the whitlockite structure. Carbonate and pyrophosphate ions are not incorporated in these whitlockites.  相似文献   

18.
As a result of solid-state reactions four chromium(III) phosphates(V) have been obtained, i.e. Cr(PO3)3, Cr4(P2O7)3, Cr2P4O13 and CrPO4. Cr2P4O13 has been obtained as a result of a solid-state reaction between Cr2O3 and (NH4)2HPO4 as well as between CrPO4 and Cr(PO3)3 mixed at a molar ratio of 1:1 or between Cr4(P2O7)3 and Cr(PO3)3 mixed at a molar ratio of 1:2. Melting temperatures and the products of thermal decomposition have been determined for the obtained chromium(III) phosphates(V).  相似文献   

19.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

20.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号