首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
采用鞍点变分方法和鞍点复数转动方法,并考虑相对论修正、质量极化效应,计算了类锂等电子系列(Z=10~20) 1s2s2 2S态的电离势、Auger跃迁率和辐射跃迁率.同时还计算了QED效应和高阶相对论修正对电离势的贡献.  相似文献   

2.
采用鞍点变分方法和鞍点复数转动方法,并考虑相对论修正、质量极化效应,计算了类锂等电子系列(Z=10~20) 1s2s2 2S态的电离势、Auger跃迁率和辐射跃迁率. 同时还计算了QED效应和高阶相对论修正对电离势的贡献.  相似文献   

3.
利用鞍点复转动及全实加关联的方法,计算了LiⅠ等电子序列[(1s2p)3P,4d]2P0及[(1s2s)1S,5p]2P0自电离态的能量和宽度.计算结果中包括相对论修正和质量极化修正.文中讨论了自电离宽度随核电荷数Z的变化关系,同时也讨论了精细结构分裂值及相对论修正随核电荷数Z的变化关系.  相似文献   

4.
采用鞍点变分方法和鞍点复数转动方法并考虑相对论修正和质量极化效应,计算了类铍离子内壳激发态1s2p3 3P0、3D0和内壳双激发态2s2p3 3D0的俄歇宽度、俄歇分支率和俄歇电子能量.同时还对1s22p2 3Pe态到1s2p3 3P0、3D0态(Z=4~10)的振子强度和辐射跃迁率进行了计算,计算结果与其他理论结果以及实验数据符合得很好.  相似文献   

5.
利用鞍点复转动的方法,计算了21个位于BeⅡ的11S和21P阈值之间的2P0自电离态,得到了包括相对论修正和质量极化修正在内的共振能量和宽度。对于23S阈值之上的共振态,我们将BeⅡ的结果与LiⅠ的结果作了对照,讨论了自电离态的宽度随核电荷数Z的变化原因  相似文献   

6.
锂内壳高激发2smd4De,2pnd4Do系列的能量和辐射跃迁   总被引:1,自引:0,他引:1       下载免费PDF全文
王菲  芶秉聪  韩利 《物理学报》2001,50(9):1685-1688
采用鞍点变分方法计算了锂内壳高激发四重态1s2smd4De(m=3—7)和1s2pnd4Do(n=3—5)的能量,利用截断变分方法得到能量改进量,并计算了相对论修正、质量极化效应,从而获得了高精度的能量计算值.同时还对该系统之间的辐射跃迁波长、振子强度和辐射跃迁率进行了计算.计算结果与实验符合得很好. 关键词: 内壳高激发态 鞍点变分方法 振子强度 精细结构  相似文献   

7.
采用多组态鞍点变分方法计算了类硼S离子K壳层激发共振态1s2s~22p~2, 1s2s2p~3, 1s2p~(4 2,4)L(L=S, P,D)的非相对论能量和波函数,利用截断变分方法饱和波函数空间,改进体系的非相对论能量.利用微扰理论计算了相对论修正和质量极化效应,利用屏蔽的类氢公式计算了QED (quantum electrodynamics)效应和高阶相对论修正.进一步,考虑闭通道和开通道相互作用,计算了由俄歇共振效应引起的能级移动,从而得到了共振态的精确相对论能级.利用优化的波函数,计算了类硼S离子K壳层激发共振态的电偶极辐射跃迁的线强度、振子强度、跃迁率和跃迁波长.计算的振子强度和辐射跃迁率均给出了长度规范、速度规范、加速度规范的结果.三种规范结果的一致性表明了本文计算的波函数是足够精确的.利用鞍点复数转动方法计算了类硼S离子K壳层激发共振态的俄歇跃迁率、俄歇分支率和俄歇电子能量.本文的计算结果与其他文献数据符合较好.  相似文献   

8.
采用鞍点变分方法和鞍点复数转动方法,并考虑相对论修正和质量极化效应,计算了类铍内壳激发态1s2p33Po的俄歇宽度、俄歇电子能量和俄歇分支率.同时还对1s2p33Po态到1s22p3p3Pe态(Z=4~10)的振子强度和辐射跃迁率进行了计算.计算结果和其他理论结果和实验数据符合的很好.  相似文献   

9.
采用鞍点变分方法和鞍点复数转动方法并考虑相对论修正和质量极化效应,计算了类锂离子内壳激发态的能量、俄歇宽度、俄歇分支率和俄歇电子能量.进一步采用截断变分方法饱和空间波函数.计算结果与其他理论结果以及实验数据符合得很好.  相似文献   

10.
采用鞍点变分方法和鞍点复数转动方法,井考虑相对论修正和质量极化效应,计算了类铍内壳激发态1s2p^33P^o的俄歇宽度、俄歇电子能量和俄歇分支率.同时还对1s2p^33P^o态到1s^22p3P^3P^e态(Z=4~10)的振子强度和辐射跃迁率进行了计算,计算结果和其他理论结果和实验数据符合的很好。  相似文献   

11.
The dielectron widths of Y(nS)(n = 1, …, 7) and vector decay constants are calculated using the relativistic string Hamiltonian with a universal interaction. For Y(nS) (n = 1, 2, 3) the dielectron widths and their ratios are obtained in full agreement with the latest CLEO data. For Y(10580) and Y(11020) a good agreement with experiment is reached only if the 4S-3D mixing (with a mixing angle θ = 27°± 4°) and 6S-5D mixing (with θ = 40°±5°) are taken into account. The possibility to observe higher “mixed D-wave” resonances, $ \tilde \Upsilon $ \tilde \Upsilon (n 3 D 1) with n = 3, 4, 5 is discussed. In particular, $ \tilde \Upsilon $ \tilde \Upsilon (≈11120), originating from the pure 53 D 1 state, can acquire a rather large dielectron width, ∼130 eV, so that this resonance may become manifest in the e + e experiments. On the contrary, the widths of pure D-wave states are very small, Γ ee (n 3 D 1)≤ 2 eV.  相似文献   

12.
The relativistic energies, the oscillator strength, and the lifetimes of high-lying core-excited states 1s2s2pnp 5P (n=2–5) and 1s2p2mp 5So (m=2–5) of Li- ion are calculated with the saddle-point variational method and restricted variation method. The fine structure and the hyperfine structure of the core-excited states for this system are also explored. The results are compared with other theoretical and experimental data in the literature.  相似文献   

13.
Recently the Babar Collaboration reported a new cs̄ state, DsJ(2860), and the Belle Collaboration observed DsJ(2715). We investigate the strong decays of the excited cs̄ states using the 3 P 0 model. After comparing the theoretical decay widths and decay patterns with the available experimental data, we are inclined to conclude that: (1) DsJ(2715) is probably the 1-(13 D 1) cs̄ state, although the 1-(23 S 1) assignment is not completely excluded; (2) DsJ(2860) seems unlikely to be the 1-(23 S 1) and 1-(13 D 1) candidate; (3) to consider DsJ(2860) either as a 0+(23 P 0) or as a 3-(13 D 3) cs̄ state is consistent with the experimental data; (4) the experimental search of DsJ(2860) in the channels Dsη, DK*, D*K and Ds *η will be crucial to distinguish the above two possibilities. PACS 13.25.Ft; 12.39.-x  相似文献   

14.
The saddle-point variational method and restricted variational method are used to calculate energies of doublyexcited singlet states 1s^23lnl′ (n =3-.) ^1 De in Be-like O^4+ ions, including the mass polarization and relativistic corrections. The saddle-point complex-rotation method is used to compute the Auger widths and Auger transition rates. These results are compared with other theoretical and experimental data in the literature.  相似文献   

15.
All relevant low-energy transition amplitudes for the D(d,n)3He and D(d,p)3H reactions were determined from a fit to Legendre expansion coefficients of the available experimental data. A simple barrier penetrability model was used. Quintet S-wave transitions are found to contribute strongly thus obliterating the idea of neutron-lean “polarized” fusion energy production. The D+D interaction radius was determined with good accuracy for both reactions individually. The astrophysical S functions show a small S-wave enhancement and P-wave suppression of the D(d,p)3H branch.  相似文献   

16.
秉聪 《物理学报》1998,47(3):403-410
采用多通道鞍点和鞍点复数转动方法,计算了类锂离子(Z=3—10)2s2s2p2P0和2s2p2p2D三激发共振态系列的能量、精细结构和寿命.Auger宽度由耦合主要的通道得到,相对论效应计算到一级微扰,质量极化效应计算到无穷级. 关键词:  相似文献   

17.
Hyperfine splittings (HFS) are calculated within the Field Correlator Method, taking into account relativistic corrections. The HFS in bottomonium and the B q (q = n, s) mesons are shown to be in full agreement with experiment if a universal coupling α HF = 0.310 is taken in perturbative spinspin potential. It gives M(B*) −M(B) = 45.7(3) MeV, M(B s * ) − M(B s ) = 46.7(3) MeV (n f = 4), while in bottomonium ΔHF(b $ \bar b $ \bar b ) = M(Υ(9460)) − M(η b (1S)) = 63.4 MeV for n f = 4 and 71.1 MeV for n f = 5 are obtained; just the latter agrees with recent BaBar data. For unobserved excited states we predict M(Υ(2S))−M(η b (2S)) = 36(2)MeV,M(Υ(3S))−M(η b (3S)) = 28(2)MeV, and also M(B c *) = 6334(4) MeV, M(B c (2S)) = 6868(4) MeV, M(B c * (2S)) = 6905(4) MeV. The mass splittings between D(23 S 1) − D(21 S 0), D s (23 S 1) − D s (21 S 0) are predicted to be ∼75 MeV, which are significantly smaller than in several other studies but agree with the mass splitting between recently observed D(2533) and D*(2610).  相似文献   

18.

The influence of the partial-wave states with nonzero orbital moment of the nucleon pair on the binding energy of the triton T(nnp) in the relativistic case is considered. The relativistic generalization of the Faddeev equation in the Bethe-Salpeter formalism is applied. Two-nucleon t matrix is obtained from the Bethe-Salpeter equation with separable kernel of nucleon-nucleon interaction of the rank one. The kernel form factors are the relativistic type of the Yamaguchi functions. The following two-nucleon partial-wave states are considered: 1S0, 3S1, 3D1, 3P0, 1P1, 3P1. The system of the integral equations are solved by using the iteration method. The binding energy of the triton and three-nucleon amplitudes are found. The contribution of the P and D states to the binding energy of triton is given.

  相似文献   

19.
Based on the assumption that DsJ *(2317) and DsJ(2460) are the (0+,1+) chiral partners of Ds and D* s, we evaluate the strong pionic and radiative decays of DsJ *(2317) and DsJ(2460) in the constituent quark meson (CQM) model. Our numerical results of the relative ratios of the decay widths are reasonably consistent with the data. PACS 13.25.Ft; 12.38.Lg; 12.39.Fe; 12.39.Hg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号