首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk antimony doped germanium (n-Ge) has been exposed to a dc–hydrogen plasma. Capacitance–voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by ∼a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of ∼3.2 μm. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (EC –0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 μm. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 °C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (VI) pairs.  相似文献   

2.
Abstract

Using secondary ion mass spectrometry (SIMS) the penetration of deuterium into Si(100) substrates as a result of exposure to deuterium low pressure rf discharges has been determined as a function of exposure time, thermal contact of the Si wafers to the substrate electrode, substrate doping, and discharge pressure. For undoped (100) single crystal Si exposed without intentional heating to a 25 m torr D2 plasma for 1 min the deuterium concentration in the near-surface region (0—30 nm) approaches 1021 at.cm?3. It drops off with depth, but is still greater than 1017 at.cm.?3 at a silicon depth of 200 nm. The large penetration depth, the observation that lowering the substrate temperature decreases the rate of deuterium uptake, and the dependence of deuterium penetration on the substrate doping type indicate that hydrogen diffusion is of primary importance. The presence of a 50 nm thick oxide layer on the Si substrate during plasma exposure lowers the deuterium near-surface concentration in the Si substrate by about three orders of magnitude, while the presence of 10 nm of thermal oxide reduces the deuterium uptake only insignificantly. Heavily B and As doped polycrystalline Si show less deuterium penetration, while undoped polycrystalline Si shows more deuterium uptake than undoped single crystal Si for the same plasma treatment.  相似文献   

3.
The microstructure of the compound layer formed by plasma nitrocarburizing of steels has been investigated by means of conversion electron, conversion X-ray Mössbauer spectroscopy (CEMS, CXMS) and X-ray diffraction. A carbon steel C35 was plasma nitrocarburized using a gas mixture of nitrogen, hydrogen and methane. The compound layer was mechanically removed in steps, followed by Mössbauer and X-ray investigations. It was found that this layer consists of different nitrides and carbides. Their concentrations vary with the depth below the surface.  相似文献   

4.
The effect of hydrogen plasma irradiation on luminescence properties of ZnO thin films was studied by using a pulse-modulated inductively coupled plasma technique. H-plasma exposure distance was changed to investigate the effect of hydrogen plasma irradiation on luminescent properties. Room temperature cathodoluminescence (CL) spectrum shows that hydrogen plasma irradiation can increase the efficiency of UV emission at 3.27 eV, and the improvement is strongly dependent on H-plasma exposure distance. For low temperature CL spectra, the intensity of donor-acceptor pair (DAP) transition at 3.315 eV has been increased more rapidly after hydrogen plasma irradiation, leading DAP to be the dominant transition.  相似文献   

5.
Highly ordered pyrolytic graphite was exposed to radio-frequency methane plasma to produce a hydrogen-terminated carbon surface. The effects of treatment parameters, namely exposure time, applied power and methane pressure, upon the treated surfaces’ chemical and morphological properties were systematically investigated. Scanning tunnelling microscopy measurements showed growth features on the plasma treated surface, the coverage of which was shown to increase with plasma exposure time or applied plasma power and decrease with gas pressure. Analyses of post-treated surface structures (via static secondary ion mass spectrometry with the aid of principle component analysis) showed an increase in surface hydrogen with plasma exposure time, applied plasma power and decreasing gas pressure. The results of these analyses were further supported by elastic recoil detection analysis measurements, which showed similar trends for the experimental parameters on the resultant surface hydrogen content.  相似文献   

6.
Palladium membranes have been used for decades for the separation of hydrogen from other gasses. In this letter the use of thin palladium leaves to act as sources of atomic hydrogen for silicon samples is explored. It has been assumed in the past that although hydrogen diffuses through palladium in atomic form, the atoms recombine to form molecular hydrogen at the surface. In this letter it is shown that hydrogen supplied to one surface of a palladium leaf can result in atomic hydrogen being released from the opposite surface at low pressure. This is demonstrated through the use of a palladium leaf in a direct plasma system which allows for atomic hydrogen to be supplied to a sample while avoiding exposure to UV radiation from the plasma and high energy charged particles. This method is shown to provide significant atomic hydrogen to silicon samples and improve passivation of silicon surfaces. Method of Shielded Hydrogen Passivation: Schematic of direct plasma chamber with a shield inserted between the plasma and the silicon sample.  相似文献   

7.
We show that upon exposure to a remote dc hydrogen plasma, the magnetic and electronic properties of the dilute magnetic semiconductor Ga1-xMnxAs change qualitatively. While the as-grown Ga1-xMnxAs thin films are ferromagnetic at temperatures T less, similar 70 K, the samples are found to be paramagnetic after the hydrogenation, with a Brillouin-type magnetization curve even at T=2 K. Comparing magnetization and electronic transport measurements, we conclude that the density of free holes p is significantly reduced by the plasma process, while the density of Mn magnetic moments does not change.  相似文献   

8.
A comparative study of hardness of thin films of hydrogenated amorphous silicon (a-Si:H) and hydrogen-free amorphous silicon (a-Si) was carried out to reveal the role of hydrogen in the plastic properties of amorphous silicon. In addition, the effect of hydrogen on hardness was established by changing hydrogen concentration in the material using post-deposition processing of the samples. The hydrogen concentration in a-Si:H was decreased by thermal annealing. In a-Si hydrogen was introduced by plasma hydrogenation. The values of hardness of the as-prepared a-Si and a-Si:H films were determined by nanoindentation using depth profiling. Low-depth indentation was applied to evaluate the effect of post-hydrogenation. The results obtained show that the presence of hydrogen in the amorphous silicon network leads to the increase in hardness. The conducted experiments demonstrate that plasma hydrogenation can be used as an effective tool to increase the hardness of amorphous silicon. Hardness of a-Si:H of about 12.3–12.7 GPa is as high as of crystalline silicon, suggesting a-Si:H can be a substitute for crystalline silicon in some MEMS.  相似文献   

9.
《Physica A》1995,214(3):461-472
To what extent can collective electron-ion interaction effects influence the electric conductivity of a Coulomb system? This paper is aimed to answer this question for the case of the solid density hydrogen plasma. The thermodynamic Green's function approach is combined with the generalized hydrodynamic theory to develop a self-consistent approximation for the dynamic (frequency dependent) electron-ion collision frequency. On this basis the electric conductivity, skin depth and reflectivity of a dense hydrogen plasma are evaluated at frequencies below the plasma frequency. The results indicate that the percolation metal-insulator transition becomes possible at low plasma densities.  相似文献   

10.
We have applied the layer-by-layer deposition technique to the growth of nano-crystalline silicon films by varying the hydrogen plasma exposure time. The tailoring effect of hydrogen plasma has been studied, The novel optical and electronic proper-ties of these films have also been reported.  相似文献   

11.
陈茂瑞  陈坤基 《中国物理》1994,3(4):250-254
We have applied the layer-by-layer deposition technique to the growth of nano-crystalline silicon films by varying the hydrogen plasma exposure time. The tailoring effect of hydrogen plasma has been studied, The novel optical and electronic proper-ties of these films have also been reported.  相似文献   

12.
We investigated the effects of hydrogen plasma treatment on the physical and electrical properties of fluorine-doped tin oxide (FTO) films used for amorphous silicon (a-Si) thin film solar cells. A slight increase in carrier concentration by the hydrogen doping effect was observed for the FTO film exposed to the hydrogen plasma for 5 min. For further exposure to the plasma, the chemical reduction became prominent and resulted in deterioration of the electrical and optical properties of the film. XPS analysis revealed that the chemical reduction of SnO2 to Sn metallic state occurs on the surface region. It was found that the defects formed by hydrogen plasma act as recombination centers at the interface between FTO electrode and p-layer of a-Si solar cells. This phenomenon resulted in the deterioration of the cell performance. The averaged conversion efficiency (6.82%) of the cells on pristine FTO hydrogen substrate was decreased to 5.81% for the cells on FTO treated for 5 min, which is mainly attributed to the decrease in short-circuit current density.  相似文献   

13.
Light scattering is used to study the amplitude, spectrum, and angular distribution of the saturated state of the ion acoustic instability in a He positive column plasma. The ion acoustic waves are driven unstable by the electron current in the column. The properties of the saturated state are studied as a function of the concentration of hydrogen impurities which are found to be present in positive column plasmas. At concentrations of a few percent, the hydrogen ions can cause linear wave damping. Their role in saturating the instability by nonlinear processes is studied by varying the hydrogen concentration.  相似文献   

14.
This paper studies boron contamination at the interface between the p and i layers of μ c-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μ c-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μ c-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.  相似文献   

15.
To investigate the ion flux escaping from the plasma and the impurity flux released by the wall, collector probes made of graphite, silicon and titanium have been exposed to the deuterium plasma confined in the toroidal device ETA BETA II. The damages on the collector surfaces have been surveyed by a scanning electron microscopy (SEM) apparatus. The deuterium and impurity retention have been measured by elastic recoil detection (ERD) and Rutherford backscattering spectroscopy (RBS) techniques respectively. The implantation build-up has been investigated as a function of the exposure time. The deuterium dose in graphite saturates after a few discharges, whereas the metal impurities exhibit a linear increase in time. The deuterium flux and its radial dependence, inferred from the implanted concentrations, have been compared with those measured by Langmuir probes. Metal impurities have been identified and their relative abundances have been compared with the material wall composition. The impurity flux is found consistent with the global content in the plasma derived by spectroscopic measurements. The deuterium dose measured in different samples has been related to the backscattering coefficient of the materials. Finally, to investigate the damage on sample probes facing the plasma particle flow, erosion probes made of vitreous graphite with silver implanted at a fixed depth have been exposed to the plasma and the thickness change after exposure recovered.  相似文献   

16.
利用Nd:YAG型金刚石精密激光切割机,采用激光轴向偏焦法对化学气相沉积(CVD)法制备的金刚石膜表面进行扫描式平整化处理,利用扫描电子显微镜(SEM)、粗糙度仪和金相显微镜对平整化后的金刚石表面进行表征,研究了激光充电电压和焦点位置对扫描凹槽宽度和深度的影响,以及扫描间距对平整化效果的影响。研究结果表明:扫描凹槽宽度随激光充电电压的升高而增大;凹槽深度随激光充电电压的升高而增大,随偏焦量的增大而增大。激光轴向偏焦法对CVD金刚石膜进行平整化处理后,其粗糙度显著减小,利用氢等离子体对其表面进行刻蚀处理,能够有效去除表层石墨,从而达到理想的平整化效果。  相似文献   

17.
Bacterial biofilms are more resilient to standard killing methods than free-living bacteria. Pseudomonas aeruginosa PAO1 biofilms grown on borosilicate coupons were treated with gas-discharge plasma for various exposure times. Almost 100% of the cells were inactivated after a 5-min plasma exposure. Atomic force microscopy was used to image the biofilms and study their micromechanical properties. Results show that the adhesiveness to borosilicate and the thickness of the Pseudomonas biofilms are reduced upon plasma treatment.  相似文献   

18.
Silicon oxynitride films with five different O/N ratios were deposited with low pressure chemical vapor deposition on a silicon substrate covered with an oxide. The films were subjected to subsequent post-deposition anneals in N2 and H2 at 1000°C, and a H plasma at 300°C to obtain information about the hydrogen chemistry. The overall film compositions were determined with elastic recoil detection. The resonant reaction 15N(1H, γ)12C was used to obtain hydrogen depth profiles. The hydrogen depth profiles are characterized by a value for the bulk concentration and width of the interfacial region. We found that the stability of the hydrogen in the bulk has a maximum for O/N ≈ 0.32. From the measured interfacial widths we deduced that for low values of O/N the stability of hydrogen in the interfacial region is relatively large. For intermediate values of O/N the stability of the hydrogen in the bulk and the interfacial region do not differ significantly, while for high O/N a relatively low stability of the interfacial hydrogen is observed. The O/N dependence of the stability of the interfacial hydrogen is consistent with the bulk stability if we assume that the interfacial oxynitride is oxygen enriched as compared to the bulk oxygen concentration.  相似文献   

19.
Interaction between atomic hydrogen and pyrolytic graphite is investigated by thermal desorption spectroscopy, atomic force microscopy, and scanning tunneling microscopy. After exposure in an atomic hydrogen flow, the initially smooth graphite surface becomes rough, with a height difference of several nanometers. When heated, the samples release hydrogen and their surface is smoothed out, showing monolayer-deep etch pits. After multiple sorption-desorption cycles, both the linear sizes and the depth of the pits increase.  相似文献   

20.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号