首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the OH and OD stretching regions of the vapor phase Raman spectra of H2O, and of a D2O/HDO mixture, at room temperature. Also, the corresponding spectrum of H2O at ∼2000 K in a methane/air flame is reported. These spectra are interpreted in terms of transition moments of the molecular polarizability, based on high-level ab initio calculations of the polarizability surface, and on variational wavefunctions considering the rotational-vibrational coupling in full. As a byproduct of this analysis several tables have been compiled including scattering strengths and assignments for individual rotational transitions of the three species. From these tables the Raman spectra in the OH/OD stretching regions can be simulated over the range of temperatures up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

2.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

3.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

4.
The NMR spectra of solutions of 30%17O-enriched H2O and D2O in nitromethane display the resonances of the three isotopomers H2O, HDO, and D2O. All17O,1H and17O,2H coupling constants and the primary and secondary isotope effects onJ(17O,1H) have been determined. The primary effect is −1.0 ± 0.2 Hz and the secondary effect is −0.07 ± 0.04 Hz. Using integrated intensities in the17O NMR spectra, the equilibrium constant for the reaction H2O + D2O 2HDO is found to be 3.68 ± 0.2 at 343 K. From the relative integrated intensities of proton-coupled and -decoupled spectra the17O–{1H} NOE is estimated for the first time, resulting in values of 0.908 and 0.945 for H2O and HDO, respectively. This means that dipole–dipole interactions contribute about 2.5% to the overall17O relaxation rate in H2O dissolved in nitromethane.  相似文献   

5.
We report the experimental rotational Raman spectra of H2O, and of a mixture of D2O and HDO in the vapor phase at room temperature, and their interpretation in terms of rotational–vibrational energies, wavefunctions, and transition moments of the molecular polarizability. These transition moments are based on high-level ab initio calculations of the wavelength dependent polarizability surface, and on wavefunctions where the rotational–vibrational coupling is considered in detail. As a byproduct of this analysis several tables have been compiled including scattering strengths and assignments for individual rotational transitions of the three species. From these tables the rotational Raman spectra can be simulated over the range of temperatures up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

6.
We report the experimental Raman spectra of the ν2 band of H2O, D2O, and HDO in the vapor phase at room temperature. A complete interpretation of the Raman intensities is carried out employing the variational rovibrational wavefunctions obtained from a Hamiltonian in Radau coordinates and an ab initio polarizability surface at 514.5 nm. We show the importance of the rotation-vibration coupling to obtain the correct line intensities. Several tables with the assignments of the individual rotational-vibrational transitions and their Raman scattering strengths are reported. From these tables, the ν2 Raman spectra can be simulated up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

7.
从分子离子H+3及其氘化同位素分子离子D+3和HD+2与超薄固体膜相互作用发生库仑爆炸为基础,分析讨论了H+3,D+3和HD+2三种分子离子的形成机理,根据产物能谱分布,利用库仑爆炸技术确定了同位素分子离子HD+2的结构形式,给出具体核间距数值.并确定在实验中不存在线状结构的HD+2.提出一种三原子分子离子和固体相互作用中尾流效应的处理方式,通过和实验结果做比较发现这是一种非常理想的处理三体尾流效应的模式,并用之进一步确认了HD+2的结构形状.文章对H+3,D+3和HD+2三种分子离子的实验结果做了对比和讨论. 关键词: +2')" href="#">微团簇HD+2 +3和D+3')" href="#">H+3和D+3 库仑爆炸 三体尾流势 团簇结构  相似文献   

8.
For the encapsulation of vitamin D2, native casein micelles and vitamin D2 with or without additional Ca2+–Pi were treated at 600 MPa and 37 °C for 60 min. The pressure release rate was set at 20 or 600 MPa/min. Vitamin D2 was quantified by reversed-phase high-performance liquid chromatography, and physical properties of the micelles were analysed by photon correlation spectroscopy. The results demonstrate that simultaneous application of Ca2+–Pi and high pressure treatment with a fast release rate significantly increased loading of vitamin D2 per casein by 6.9-fold. The addition of Ca2+–Pi enhanced micelle aggregation and the vitamin was entrapped within the formed aggregates. However, high pressure treatment without Ca2+–Pi with a slow pressure release rate revealed similar results, increasing vitamin D2 per casein by 6.7-fold. The vitamin D2 loading in reassembled casein micelles is supposed to be due to hydrophobic interactions between the hydrophobic domains of the micelles.  相似文献   

9.
The change in the initial and steady state (∼0 and 5 s after initiation of electron beam irradiation) peak heights from the 5D27F3, 5D17F3 and 5D07F2 cathodoluminescent transitions from Eu3+ have been studied for Ln2O2S:Eu3+ (Ln=La, Gd) phosphors. Specifically, the intensity ratio of these transitions, designated as 5D1/5D0, increased and then decreased for both La2O2S:Eu3+ (0.1 mole%) and Gd2O2S:Eu3+ (0.4 mole%), as the current density was changed from 10 towards a 1000 μA/cm2. These effects were shown to be consistent with feeding from the higher 5D2 excited state to the lower energy 5D1 excited state, resulting in an increase of the 5D1/5D0 ratio at low current densities. At higher current densities, energy was funneled from the 5D1-5D0 states, resulting in a decrease of the 5D1/5D0 ratio. These effects of feeding versus funneling were dependent on both the Eu3+ concentration and current density, and changed with time (i.e., approached a steady state after ∼5 s) due to increased activator interactions from induced internal electric fields. The magnitude of thermal quenching versus interaction quenching was investigated using changes of the peak height ratios of 5D2/5D0 and 5D1/5D0.  相似文献   

10.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling.  相似文献   

11.
Li Wang  Na Wang  Hongqing He 《Molecular physics》2014,112(11):1600-1607
The reaction mechanisms of methylhydrazine (CH3NHNH2) with O(3P) and O(1D) atoms have been explored theoretically at the MPW1K/6-311+G(d,p), MP2/6-311+G(d,p), MCG3-MPWPW91 (single-point), and CCSD(T)/cc-pVTZ (single-point) levels. The triplet potential energy surface for the reaction of CH3NHNH2 with O(3P) includes seven stable isomers and eight transition states. When the O(3P) atom approaches CH3NHNH2, the heavy atoms, namely N and C atoms, are the favourable combining points. O(3P) atom attacking the middle-N atom in CH3NHNH2 results in the formation of an energy-rich isomer (CH3NHONH2) followed by migration of O(3P) atom from middle-N atom to middle-H atom leading to the product P6 (CH3NNH2+OH), which is one of the most favourable routes. The estimated major product CH3NNH2 is consistent with the experimental measurements. Reaction of O(1D) + CH3NHNH2 presents different features as compared with O(3P) + CH3NHNH2. O(1D) atom will first insert into C–H2, N1–H4, and N2–H5 bonds barrierlessly to form the three adducts, respectively. There are two most favourable paths for O(1D) + CH3NHNH2. One is that the C–N bond cleavage accompanied by a concerted H shift from O atom to N atom (mid-N) leads to the product PI (CH2O + NH2NH2), and the other is that the N–N bond rupture along with a concerted H shift from O to N (end-N) forms PIV (CH3NH2 + HNO). The similarities and discrepancies between two reactions are discussed.  相似文献   

12.
在新的全域势能面上, 用准经典轨线方法细致地研究了O(1D)+CD4多通道化学反应的动力学.这个势能面是用交换不变多项式方法基于MRC+Q/aug-cc-pVTZ从头算点拟合得到的.通过计算得到了产物OD+CD3、D+CD2OD/CD3O和D2+DCOD/D2CO的分支比、平动能分布以及角度分布,结果显示理论与实验吻合得较好, 从而说明了这个反应的同位素取代效应很小. 研究表明,O(1D)+CD4反应是经过陷入的抽取机理发生的: 最初主要通过D原子的抽取,并不是之前人们认为的直接C-D键的插入形成CD3OD中间物后再进而解离成各个产物通道.  相似文献   

13.
Deuterofullerites C60D x have been studied by means of 2H NMR spectroscopy. It has been established that there are two types of carbon–deuterium bindings in the samples under study: tip C–D with quadrupole constant coupling (QCC) 171 kHz and bridge –C...D...C– with QCC 56 kHz. It is possible that the latter bond is a result of the rigidity of the lattice, which is unusual for fullerene compounds.  相似文献   

14.
采用分幅扫描单光子计数荧光光谱装置,研究温度升高对PSⅡ CP47/D1/D2/Cyt b559复合物能量传递的影响.获得分别在20℃、42℃和48℃处理后,CP47/D1/D2/Cyt b559复合物主发射峰所在的波长未发生多大改变,均在682 nm,但其荧光强度逐渐降低,而大约730 nm处主发射峰的振动副带发生了明显的变化,42℃其弱峰趋势已不显著,相对荧光强度下降,48℃弱峰趋势已完全消失;最大峰值处获得两个时间组分,这两个组分都属于电荷重组.其中,1~2 ns组分随处理温度的升高变化不大,而7~20 ns组分随温度升高变化较大,并且逐渐延长.因此,处理温度的升高使CP47/D1/D2/Cyt b559复合物的二级结构、色素分布的空间位置发生变化,从而影响了CP47/D1/D2/Cyt b559复合物中的能量传递以及电荷重组.42℃已对其造成影响,而48℃对其影响很大.  相似文献   

15.
Fully deuterated isotopomers of methanol (12CD3OD and 13CD3OD) were optically pumped with a CO2 laser. Five new far-infrared laser lines were discovered in 12CD3OD and 25 in 13CD3OD in the range 43.697 to 719.426 m. The frequencies of these new and some previously reported laser lines, the pump offset, the relative polarization, the relative intensity, and the optimum pressure of operation were measured.  相似文献   

16.
We have investigated the N2O–HDO molecular complex using ab initio calculations at the CCSD(T)-F12a/aug-cc-pVTZ level of theory and using cavity ring-down spectroscopy to probe an HDO/N2O/Ar supersonic jet around 1.58 μm. A single a-type vibrational band was observed, 13 cm?1 redshifted compared to the OH+OD excited band in HDO, and 173 vibration-rotation lines were assigned (Trot ≈ 20 K). A weighted fit of existing microwave and present near infrared (NIR) data was achieved using a standard Watson's Hamiltonian (σ = 1.26), producing ground and excited states rotational constants. The comparison of the former with those calculated ab initio suggests a planar geometry in which the OD rather than the OH bond in water is almost parallel to NNO. The equilibrium geometry and dissociation energy (De = –11.7 kJ/mol) of the water–nitrous oxide complex were calculated. The calculations further demonstrate and allow characterising another minimum, 404 cm?1E0) higher in energy. Harmonic vibrational frequencies and dissociation energies, D0, were calculated for various conformers and isotopic forms of the complex, in both minima. The absence of N2O–D2O from dedicated NIR experiments is reported and discussed.  相似文献   

17.
On the surface of NaF the adsorption isotherms of H2O, D2O, CH3OH, C3H3OH and 1-C3H7OH as well as the infrared spectra of H3O, D2O, dilute HDO, CH3OH and CH3OD were measured. The adsorption temperatures of H3O (253–308 K) were within the phase transition region where two phases of low and high density coexist, while those of CH3OH, C2H5OH and 1-C3H3OH were yet within a super-critical region. The entropy of the 2D condensed H2O on NaF was found to be 14.0 cal K?1 mol?1, which suggests that the condensed phase of water on NaF is liquid-like. The OD stretching band of dilute HDO in the 2D condensed water gives a maximum adsorption at ca. 2530 cm?1 with a half width of ca. 150 cm?1, being in good agreement with that in liquid water. Comparison of the integrated absorbance of the D2O bending mode with that of the OD stretching mode suggests that the cluster size of the 2D condensed water on NaF decreases with increasing temperature. The 2D critical temperature and the occupied areas of these adsorbates enable us to conclude that the compatibility of the molecular size with the surface lattice is not important in the occurrence of the 2D condensation of the hydrogen-bonding molecules on NaF and that adsorbed molecules are randomly oriented on the surface to the extent similar to that in 3D liquid state.  相似文献   

18.
Enhancement spectra of the collision-induced absorption in the first overtone region 5500-6750 cm−1 of D2 in the D2-Ar, D2-Kr, and D2-Xe binary mixtures were studied at 298 K for base densities of D2 in the range 55-251 amagat and for partial densities of Ar, Kr, and Xe in the range 46-384 amagat. The observed spectra consist of the following quadrupolar transitions: O2(3), O2(2), Q2 (J), J = 1-5 and S2 (J), J = 0-5 of D2. Binary and ternary absorption coefficients were determined from the integrated absorption coefficients of the band. Profile analyses of the spectra were carried out using the Birnbaum-Cohen (BC) lineshape function and characteristic lineshape parameters were determined from the analyses.  相似文献   

19.
There are two possible configurations for H2O, linear(D∞h) or bent(C2v). For a C2v′, the three bands ν1′ ν2 and ν3 should appear in both Raman and infrared. For a D∞h. however, the ν1, band should appear in only Raman and the ν2 and ν3 bands, in only infrared, that is, a principle of mutual exclusion of Raman and infrared should hold. The present author concludes that H2X and D2X(X=O, S, Se, Te) have a linear D∞h. structure, since the obtained spectra show mutual exclusion of Raman and infrared.  相似文献   

20.
To investigate the effects of sequestration condition on hydrogen bonds between mineral and water, molecular dynamics simulations have been performed. The simulations were conducted at conditions related with geologic sequestration sites: pressure (3.1–32.6 MPa), temperature (318 and 383 K), salinity (0–3 M), salt (NaCl and CaCl2) and silica surface models Q2 (geminal), Q3 (isolated) and amorphous Q3. The hydrogen bonds were classified into four types: silica–silica, silica–dissolved CO2, silica–water as donors and silica–water as acceptors. The mean numbers of hydrogen bonds for each type were analysed. The results show that: (1) silica surface silanol groups do not form H-bonds with dissolved CO2 molecules in water (brine); (2) The mean number of hydrogen bonds between silanol groups follows the order: Q2 > amorphous Q3 > Q3; (3) The mean number of hydrogen bonds between silanol and water molecules follows the order: Q3 > amorphous Q3 > Q2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号