首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Helium clustering in alpha irradiated copper has been investigated by positron annihilation spectroscopy. Pure copper samples have been homogeneously helium implanted using a cyclotron, yielding helium concentrations of 100 appm and 400 appm. Post-implantation positron lifetime and Doppler broadened annihilation lineshape measurements have been carried out on these Cu samples as a function of isochronal annealing temperature. An annealing stage observed in the isochronal annealing curve viz., a marked reduction in the resolved lifetime τ2 and an increase of its intensity I 2, is explained as due to the formation of helium bubble embryos. At higher annealing temperatures, τ2 corresponding to helium bubbles increases and saturates while its intensity I 2 decreases, indicating an increase in the size of the bubble with a concomitant decrease in the bubble concentration. This stage is interpreted to be the bubble growth stage. From an analysis of positron lifetime parameters in the growth stage, helium stom density, bubble size and bubble concentration have been deduced at various annealing temperatures. The bubble characteristics are found to be affected by the helium dose. The present results on direct helium implanted Cu are compared with those of our earlier study on n-irradiated Cu-B, where helium was introduced using 10B(n, α)7 Li reaction.  相似文献   

2.
Abstract

The temperature dependent growth of He bubbles in Al films implanted at room temperature to various He concentrations is investigated by electron energy-loss spectroscopy (EELS) and transmission electron microscopy (TEM). EELS reveals even the weakest changes in He density within the bubbles by measuring the pressure shift of the He 11S0?21P1 transition. This is applied to investigate the mechanisms driving the growth of bubbles in the temperature range 20°C ? T ? 500°C. For T?200°C indication is found that bubbles relax by emission of interstitial dislocation loops. At higher temperatures bubble migration and coalescence under absorption of thermal vacancies is evident. The final state is characterized by large cavities filled with He at low pressure as evidenced by the detection of the atomic He series.  相似文献   

3.
4.
Abstract

The novel application of vacuum ultra-violet absorption spectroscopy and electron energy loss spectroscopy to helium bubbles in metals is presented. These measurements, carried out on thin aluminium films containing different concentrations of helium and various bubble size distributions, were aimed at determining the density (and thus pressure) of helium in bubbles by observing the shift and broadening of the IS-2P transition in the helium. The data coupled with a theoretical model developed by the authors (see following paper) indicate densities as high as 1023 He cm?3 for specimens containing small bubbles. Data are also presented on the effect that annealing and cooling have on these spectra. The annealing experiments give rise to fairly complex changes in absorption peak structure but with a general shift towards the unperturbed resonance line. The cooling experiment gives rise to a further shift and a narrowing of the absorption spectrum on cooling to 77 K which is tentatively identified as the liquid/solid transition in the helium. Finally, fluorescence spectrum of an Al/He specimen excited with low energy electrons is presented.  相似文献   

5.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

6.
7.
S. J. Cox  F. Graner 《哲学杂志》2013,93(22):2573-2584

Finite monodisperse two-dimensional clusters of bubbles are shown to behave like a crystal rather than a liquid. They attain their lowest-energy configuration when they find an arrangement close to a hexagonal lattice, as predicted by the Wulff construction. The deviation from hexagonal shape of the bubbles in a cluster and the variation in bubble pressure throughout the structure are calculated. It is shown that the effect of reducing the length of the boundary is negligible, explaining why configurations retaining the structure of the lattice will give the lowest energy.  相似文献   

8.
Solid helium bubbles were directly observed in the helium ion implanted tungsten(W), by different transmission electron microscopy(TEM) techniques at room temperature. The diameters of these solid helium bubbles range from1 nm to 8 nm in diameter with the mean bubble size about 3 nm. The selected area electron diffraction(SAED) and fast Fourier transform(FFT) images revealed that solid helium bubbles possess body-centered cubic(bcc) structure with a lattice constant of 0.447 nm. High-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)images further confirmed the existence of helium bubble in tungsten. The present findings provide an atomic level view of the microstructure evolution of helium in the materials, and revealed the existence of solid helium bubbles in materials.  相似文献   

9.
The formation of gas bubbles in metallic materials may result in drastic degradation of in-service properties. In order to investigate this effect in high density and medium-low melting temperature (T M) alloys, positron annihilation spectroscopy measurements were performed on helium-implanted gold–silver solid solutions after isochronal annealing treatments. Three recovery stages are observed, attributed to the migration and elimination of defects not stabilized by helium atoms, helium bubble nucleation and bubble growth. Similarities with other metals are found for the recovery stages involving bubble nucleation and growth processes. Lifetime measurements indicate that He implantation leads to the formation of small and over-pressurized bubbles that generate internal stresses in the material. A comprehensive picture is drawn for possible mechanisms of helium bubble evolution. Two values of activation energy (0.26 and 0.53 eV) are determined below and above 0.7T M, respectively, from the variation of the helium bubble radius during the bubble growth stage. The migration and coalescence mechanism, which accounts for these very low activation energies, controls the helium bubble growth.  相似文献   

10.
The formation of helium bubbles in 18–10 steel and 20–45 nickel alloy implanted by He ions during tension is studied, and helium release from them during high-temperature deformation is analyzed. During helium implantation, an applied tensile stress favors bubble formation and material swelling. Annealing and deformation of the irradiated materials increase the bubble size. Helium bubble migration and accumulation at grain boundaries cause cracking. Bubble migration is caused by a stress gradient. The deformation of the irradiated materials leads to an increase in the release rate of accumulated helium. A model is proposed for the development of helium porosity in a material under stress. A brittle fracture criterion is formulated for such a material.  相似文献   

11.
Indian Reduced Activation Ferritic Martensitic steel is implanted with 130 keV helium ions to a fluence of 5 × 1014 and 1 × 1016 ions/cm2 and investigated using positron annihilation spectroscopy. The samples were characterised by defect sensitive S and W-parameters using depth resolved slow positron beam. A dose dependency is observed in the nucleation and growth of helium bubbles with annealing temperature. An experimental evidence for the migration of smaller helium-vacancy complexes is observed via the variation in thickness/width of irradiated layer with temperature. The S–W plot clearly shows the regions corresponding to defect annealing, bubble nucleation and growth.  相似文献   

12.
The influence of helium, introduced by the 10B(n, α)7Li reaction, on the evolution of defect structure in copper containing a few hundred ppm boron has been studied by detailed positron lifetime and two-photon angular correlation measurements, supplemented by TEM studies. In the as-irradiated state of Cu-B, two lifetime components have been resolved. The shorter lifetime, τ1, = 167 ps of 97% intensity, has been understood as due to positron trapping at small helium-vacancy complexes, while the longer lifetime τ2 = 450 ps of 3% intensity is explained as due to helium-free voids. Marked changes in the annihilation characteristics observed at 670 K are interpreted in terms of the nucleation of microbubbles, controlled by thermally activated helium migration to vacancy traps. Corroborative evidence for the onset of helium clustering is obtained from the change in the average size of positron traps as deduced from the smearing of the measured angular correlation spectra. Helium bubbles and helium-free voids coexisting in the system have been distinguished by a three-component analysis of the lifetime spectra. Bubbles are found to be stable beyond the temperature of dissociation of voids. The size and concentration of bubbles, determined independently by TEM measurements, are in accordance with the positron annihilation results in the growth stage. The observed positron lifetime at higher annealing temperatures has been analysed by relating the annihilation rate to helium atom density and helium pressures in bubbles evaluated. These pressures are in satisfactory agreement with the estimates of equilibrium pressures, leading to the conclusion that bubble relaxation occurs by the mechanism of thermal vacancy condensation.  相似文献   

13.
Topographical and expansion effects which occur as a result of implanting erbium thin films with helium up to fluences of 1.5 × 1018 He+/cm2 are described. There exists an inverse relationship between critical dose and annealing temperature with respect to the formation of surface bubbles. Post implantation annealing at or below 400°C is found to strongly reduce implantation induced expansion for doses less than 3.5 × 1017 He+/cm2, but is observed to result in increased expansion above this dose. At temperatures above 400°C, expansion is increased for all doses investigated. Details of bubble development in the implanted layer are discussed and the manner in which surface bubbles develop from enlarged subsurface bubbles is illustrated.  相似文献   

14.
Brownian-type motion of helium bubbles in aluminum and its dynamical response to irradiation with 100-keV Al+ ions at high temperatures has been studied using in situ irradiation and transmission electron microscopy. It is found that, for most bubbles, the Brownian-type motion is retarded under irradiation, while the mobility returns when the irradiation is stopped. In contrast, under irradiation, a small number of bubbles display exceptionally rapid motion associated with the change in bubble size. These effects are discussed in terms of the dynamical interaction of helium bubbles with cascade damage formed by the high-energy self-ion irradiation.  相似文献   

15.
181Ta time differential perturbed angular correlation (TDPAC) and positron lifetime measurements were carried out on homogeneously α-implanted CuHf samples. TDPAC measurements indicate the trapping of vacancy clusters and helium associated defect complexes by Hf atoms. The presence of helium-vacancy complexes and helium stabilised voids has been identified by positron lifetime measurements. Further the nucleation and growth stages of helium bubbles have been identified. TDPAC and positron lifetime measurements indicate that Hf atoms act as heterogeneous nucleating centers for helium bubbles. Hf atoms are found to suppress the bubble growth in CuHf as indicated by the results of positron lifetime measurements.  相似文献   

16.
Abstract

Direct observations were made on the behaviour of He-bubbles of ? 50 Å, diameter in α-irradiated Al-foils. Micrographs of bubbles were taken in selected contrast conditions after a first α-irradiation. The same areas were photographed again at the best reproducible angle of inclination and in the same contrast conditions after a second α-irradiation. Comparison of the micrographs showed general growth of the bubbles. There was no indication of shrinkage or complete dissolution of single bubbles.

Estimations of the mean bubble diameter before and after the second α-irradiation indicated bubble growth due to the additionally introduced He.  相似文献   

17.
Rui Zhu 《中国物理 B》2021,30(8):86102-086102
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures. In the present study, alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×1017 ions/cm2 at room temperature. Throughout the cross-section transmission electron microscopy (TEM) image, numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result. Post-implantation annealing was conducted at 700 ℃ for 2 h to investigate the bubble evolution. The long-range migration of helium bubbles occurred during the annealing process, which makes the bubbles of the peak region transform into a faceted shape as well. Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence (MC) mechanism. With the diffusion of nickel atoms slowed down by the alloy elements, the migration and coalescence of bubbles are suppressed in alloy 617, leading to a better helium irradiation resistance.  相似文献   

18.
Abstract

The energy shift of the He 11S0?21P1 transition, ΔE(n), can be used to determine the density, n, of He in bubbles in metals. A self-consistent band structure calculation for solid fcc He yields a linear relationship ΔE=C.n with C th=22 × 10?3 eV nm3. Systematic electron energy loss spectroscopy and transmission electron microscopy studies of He bubbles in Al for various He doses and temperatures result in Cexp=(24±8).10?3 eV nm3 in agreement with theory. The analysis is consistent with the assumption that dislocation loop punching is the dominant bubble growth mechanism during high-dose room temperature implantation. The application to He bubbles in Ni indicates a maximum He density of n=0.2 × 103 nm?3 for which He should be solid at room temperature.  相似文献   

19.
Trapping of helium after implantation at energies of 8 to 150 keV and fluences up to 1019 He-ions/cm2 in nickel at room temperature is studied by measuring the thermal desorption spectra during linear heating up to 1000°C. At several annealing stages the trapped helium is measured by means of the nuclear reaction 3He(d, α)H and the target surface is observed by laser scattering and with the scanning electron microscope.

The thermal desorption spectra depend strongly on the implantation fluence but only slightly on the implantation energy, indicating a similar trapping of He in the lattice for the implantation energies used here, The temperature at which desorption starts decreases with increasing fluence. Above the critical fluence for blistering an additional low temperature (150°C) desorption maximum is found.

The desorption peak at 150°C can be approximated theoretically with a single jump desorption process of first order and a Gaussian distribution of activation energies around 1 eV. The measurements indicate that at higher temperatures (>300°C) helium desorption is partly due to the opening of helium bubbles at the target surface.  相似文献   

20.
We report here the formation of helium gas bubbles in a nickel based metallic glass Ni45Fe5Co20Cr10Mo4Bl6 after 50 keV helium ion irradiations at room temperature studied by transmission electron microscopy. At higher doses bubbles eventually grow and deform the material surface plastically leading to blister formation. Critical dose for blister formation is determined. Helium gas bubble formation is associated with partial crystallisation of the glass which can be observed from selected area diffraction from the region where bubbles are formed. Micro-hardness measurements are also performed on the irradiated samples as a function of dose. Increase in the microhardness has been observed after a dose at which helium bubbles are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号