首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

For locating self-interstitial atoms in silicon by means of Rutherford backscattering of channelled ions, boron has been implanted at room temperature and at the temperature of liquid nitrogen. The employed implantation doses were 2. 1014 cm?2 and 7. 1013 cm?2, respectively. The experiments have been performed at 300 K and at 120 K to reduce ionization-stimulated annealing. The beam of 1.4 MeV He+-ions was highly collimated.

To obtain the configuration of implantation-induced self-interstitial atoms symmetry considerations have been performed.

The location experiments presented indicate the existence of isolated self-interstitial atoms in silicon. Under the conditions of these experiments the interstitial atoms assume a (110) split configuration of orthorhombic symmetry.  相似文献   

2.
Abstract

MgO implanted at room temperature with 150keV In+ ions and doses ranging from 1015 to 1017 ions cm?2 was studied by optical absorption and transmission electron microscopy (TEM). Creation of defects in the anionic sublattice (F-, F+-, F2-centers) and in the cationic sublattice (V?-centers) are observed. Subsequent annealings of the implanted crystals have shown different behaviours depending on the implanted dose. For medium dose (2 × 1016 ions cm?2), the formation of In3+ species seems to be the preponderant phenomenon. At higher dose (8 × 1016 ions cm?2), metallic precipitates are formed between 400 and 700°C. The identification of these precipitates has been achieved using TEM: they are formed of a metallic alloy Mg3In with a hexagonal structure and their orientation relationship with respect to the MgO matrix is: (0001)Mg3In//(111)Mgo and [1120]Mg3In// [l10]MgO.  相似文献   

3.
Optical absorption, excitation, and fluorescence were investigated in Eu ion-doped CdWO4 single crystal grown by a modified Bridgman method. The results indicate that Eu2+ and Eu3+ ions coexist in CdWO4 crystal and an energy transfer occurs between these Eu2+ and Eu3+ ions. When the crystal is excited by 266-nm light, the energy corresponding to the 4f65d to 8S7/2 transition of Eu2+ ions results in the excitation of the Eu3+ ions to the 5DJ level. The effect on fluorescence of annealing in oxygen at various temperatures was investigated. The excitation intensity of Eu2+ ions at 266 nm decreases as annealing temperature increases from 300 K to 1073 K, but it remains at a certain equilibrium level when the annealing temperature is further increased.  相似文献   

4.
Silicon wafers were implanted with 40 keV B+ ions and then with 50 keV N+ or 100 keV Ar+ ions to doses from 1.2 x 1014 to 1.2 x 1015 cm–2. The implanted samples were studied using the Hall effect and standard van der Pauw methods. The dependences of the sheet resistivity and the sheet concentration of charge carriers on the annealing temperature in the range from 700 to 1300 K were obtained. Models describing the influence of additional implantation of nitrogen and argon ions on the process of boron electrical activation during annealing are proposed.  相似文献   

5.
30 keV boron ions are implanted at doses of 2×1014 and 2×1015 cm–2 in 100 silicon wafers kept at room or liquid-nitrogen temperatures. The samples are analyzed by double-crystal X-ray diffraction, transmission electron microscopy and secondary ion-mass spectrometry before and after furnace annealing at 800°C. The low-dose implant does not amorphize the substrate at any of the temperatures, and residual defects together with a remarkably enhanced boron diffusion are observed after annealing. The high-dose implant amorphizes the substrate only at low temperature. In this case, unlike the room-temperature implant, the absence of any residual defect, the incorporation of the dopant in substitutional position and a negligible profile braodening of boron are obtained after annealing. In principle, this process proves itself a promising step for the fabrication of p +/n shallow junctions with good electrical characteristics.  相似文献   

6.
Silicon wafers were implanted with 40 keV B+ ions (to doses of 1.2×1014 or 1.2×1015 cm–2) and 50 or 100 keV N+ ions (to doses from 1.2×1014 to 1.2×1015 cm–2). After implantations, the samples were furnace annealed at temperatures from 100 to 450 °C. The depth profiles of the radiation damages before and after annealing were obtained from random and channeled RBS spectra using standard procedures. Two damaged regions with different annealing behaviour were found for the silicon implanted with boron ions. Present investigations show that surface disordered layer conserves at the annealing temperatures up to 450 °C. The influence of preliminary boron implantation on the concentration of radiation defects created in subsequent nitrogen implantation was studied. It was shown that the annealing behaviour of the dual implanted silicon layers depends on the nitrogen implantation dose.The authors would like to thank the members of the INP accelerator staff for the help during the experiments. The work of two authors (V.H. and J.K.) was partially supported by the Internal Grant Agency of Academy of Science of Czech Republic under grant No. 14805.  相似文献   

7.
Several doses of 200 KeV phosphorus ions have been implanted under channeling conditions along the [110] direction in silicon.

Range distribution has been determined for the three implant doses 1013, 1014, 1015 P+/cm2 both with the electrical measurements and the neutron activation techniques.

The radiation damage distribution has been determined both with 290 KeV proton back-scattering analysis and with transmission electron microscopy (TEM) observations.

Good agreement has been found between electrical and neutron activation profiles in the samples where 100% of the implanted dose had been electrically activated by means of annealing.

Carrier concentration profiles, from samples implanted with 1015 P+/cm2, determined after two different annealing temperatures (500°C and 700°C) have bcen compared with the radiation damage distribution and a correlation between damage and phosphorus electrical activation process seems to be possible.

Maximum damage peak, as determined by back-scattering analysis, shifts from ~0.4 μ depth in the lower dose(5 × 1014 P+/cm2), to ~0.22 pm depth in the higher implanted dose (4 × 1015 P+/cm2). Damage distribution of phosphorus ions random implanted in the same experimental conditions shows 3 peak at ~0.2 μn depth.

In accordance with the back-scattering analysis, T.E.M. observations on 1015P+/cm2 implanted samples show the presence of amorphous regions at depth between 0.25 and 0.5 μm from the surface. In the most damaged layer ~0.3μm in depth, a surface density of ~1012/cm2 amorphous regions 25-50 A diameter was observed.  相似文献   

8.
Thermoluminescence (TL) studies of Eu2+ and Mn2+ doped BaMgAl10O17 (BAM) are reported and discussed. The TL spectra that are measured after irradiation with ultraviolet (120-) show a series of TL peaks between 100 and . The TL spectra are similar for BAM with the two dopants, which suggest that the shallow traps are typical for the BAM host lattice. Using the Hoogstraaten analysis trap depths between 0.1 and are determined. A model is proposed based on thermally activated recombination in local TL centres (not via the conduction band). Further support for this model is obtained from the observation that the TL signal is strongest for excitation around the band edge of BAM . Upon heating the samples in air all low temperature TL peaks decrease in intensity. In addition a new peak appears in the TL spectrum, which is connected with a deeper trap and also a partial oxidation of Eu2+ to Eu3+ is observed. The luminescence efficiency is lower and the UV induced degradation is faster after annealing in air. These results indicate that the shallow traps are related to oxygen vacancies. The shallow traps do not have a negative influence on performance (efficiency and degradation) of BAM as a lighting phosphor. The luminescence efficiency and stability are strongly influenced by the formation of Eu3+ and a deeper trap during annealing in air. Subsequent annealing in a reducing atmosphere restores the original properties.  相似文献   

9.
Abstract

Antimony is known to be a donor in silicon, Low-energy implantations of Sb in Si produce very shallow profiles which have many device applications. Gibbons et al. 1 calulated the projected ranges of Sb ion-implanted in Si, using the LSS (Lindhard, Scharff, and Schiott) method. Oetzmann et al. 2 measured projected ranges and range straggling for several heavy ions in Si, Al, and Ge, using high-resolution backscattering; in the energy region of interest to us, e = 10?2 to 10?1, their results were about 30% higher than those reported by Gibbons et al. In the study reported here, we implanted 5 × 1014 Sb/cm2 in Si at 5–60 keV, measured the resulting depth distribution by secondary ion mass spectrometry, and checked the measurements by backscattering. Our results showed the experimental projected ranges to be about halfway between those reported in the earlier studies. The discrepancies between theoretical calculations and experimental results are due not to the electronic stopping cross section, which is negligible in the range of interest here, but to the nuclear stopping power. Using a modified nuclear scattering potential given by Wilson et al.,3 we calculated the projected range distribution according to the method described by Winterbon.4 Our results are in very good agreement with the experimental measurements.  相似文献   

10.
A photoluminescence (PL) study of the green-emitting SrGa2S4:Eu2+ phosphor is reported. Diffuse reflectance, excitation, and emission spectra were examined with the aim to enlarge the fundamental knowledge about the emission of the Eu2+ ion in this lattice. The thermal dependence of the radiative properties was investigated. In particular, the Stokes shift, the crystal field splitting and the activation energy of the thermal quenching were determined. By combining these results with the information presented in literature, we discussed the location of the Eu2+ levels relative to the valence and conduction bands of SrGa2S4.  相似文献   

11.
The influence of annealing on the concentration profiles of boron implanted into silicon with does of 1014 ions/cm2 up to 1016 ions/cm2 and an energy of 70 keV was studied. The concentration profiles were measured with Secondary Ion Mass Spectrometry (SIMS). The broadening of the concentration profiles during annealing can be described as a superposition of effects resulting from a relatively immobile and a mobile boron fraction. The properties of the immobile boron fraction were studied by measuring the influence of a boron implantation on the distribution of a homogeneous boron background dope. From these experiments it was concluded that the immobile boron fraction consists of boron precipitates. The properties of the mobile fraction were studied from concentration profiles that were obtained after annealing during different periods at the same temperature. It was found that during the initial stage of the annealing process a fast broadening of the profile occurs; this was assumed to be due to an interstitial type boron diffusion. After prolonged annealing the much slower substitutional type diffusion prevails, due to trapping of the interstitial boron atoms by vacancies. The reliability of the SIMS method, as applied to profile measurements, was checked for the high boron doses used in this investigation. Excessive boron precipitates, obtained after annealing of a high dose, such as 1016 ions/cm2 at about 1000°C, appear to give some increase of the ion yield.  相似文献   

12.
ABSTRACT

According to the spectra of stationary X-ray excited luminescence (XEL) of BaF2: Eu nanophosphors at 80 and 294 K, it was revealed that the thermal annealing of fine-grained nanoparticles (d?=?35?nm) in the range of 400–1000°C, which is accompanied by an increase of their sizes in the range of 58–120?nm, does not result in effective changes of the charge state of Eu3 + → Eu2 + activator, in contrast to CaF2: Eu nanoparticles. The maximum light output of X-ray excited luminescence of BaF2: Eu nanophosphors in the 590?nm emission band of Eu3+ ion was observed at an annealing temperature of 600°C with the average size of nanoparticles 67?nm. The subsequent growth of annealing temperatures, especially in the range of 800–1000°C, causes decrease in the light output of X-ray excited luminescence due to the increase of defect concentration in the lattice as a result of sharp increase of nanoparticle sizes and their agglomeration. In BaF2: Eu nanoparticles of 58?nm size, according to the thermostimulated luminescence (TSL) spectrum, transformation of Eu3+ → Eu2+ under the influence of long-time X-ray irradiation was revealed for the peak of 151?K. Thus, X-ray excited luminescence spectra of BaF2: Eu nanophosphors are formed predominantly due to the emission of Eu3+ ions, while emission of Eu2+ ions is observed in the TSL spectra.  相似文献   

13.
对注入Ar+后不同晶面取向的蓝宝石晶体在不同退火条件下的光致发光谱进行了分析.分析结果表明:三种晶面取向的蓝宝石样品经Ar+注入后,其光致发光谱中均出现了新的位于506nm处的发光峰;真空和空气气氛下的退火均对样品在506nm处的发光有增强作用,不同晶面取向的样品发光增强程度不同,且发光增强至最大时的退火温度也不同,空气气氛下的退火使样品发光增强程度更为显著.由此可以看出,退火气氛、退火温度和晶面取向均对样品发光峰强度有影响. 关键词: 2O3')" href="#">Al2O3 离子注入 退火 光致发光谱  相似文献   

14.
采用熔融冷却法制备了系列Ho3+/Pr3+共掺的Ge25Ga10Se65玻璃样品,测试了样品的吸收光谱以及908 nm激光抽运下的中红外荧光光谱和Ho3+离子5I7能级寿命.计算了Ho3+:5I75I8发射截面和Pr3+:3H43F2吸收截面,讨论了Ho3+,Pr3+离子之间的能量转移效率及Pr3+离子浓度的影响.通过拟合Ho3+离子2.0 μm荧光衰减曲线判断能量转移机理.结果表明,Ho3+掺杂Ge25Ga10Se65玻璃中引入Pr3+离子可以有效提高Ho3+离子的2.9 μm荧光强度. 关键词: 中红外发光 硫系玻璃 3+/Pr3+共掺')" href="#">Ho3+/Pr3+共掺  相似文献   

15.
An Eu-doped ZnAl-layered double hydroxide (ZnAl-LDH) was synthesized by the coprecipitation method at room temperature. A set of as-prepared samples were subjected to annealing at various temperatures from 100, 200, 300, 500, 600, 700, to 800 °C for 1 h, respectively. The annealed samples were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), and photoluminescence (PL). New phases occurred with annealing temperatures above 300 °C. Meanwhile, the emissions of Eu3+ ions described by 5D0-7FJ transition (J=1, 2, 3, 4), especially for the 5D0-7FJ transition (J=1, 2), varied with phase transitions of its local host materials from ZnAl-LDH, ZnO, to mixed phases of ZnO and ZnAl2O4. The emissions of Eu3+ ions depending on its host materials were discussed.  相似文献   

16.
According to stationary X-ray-excited luminescence spectra and thermally stimulated luminescence spectra of CaF2:Eu nanophosphors, it was found that Eu3+?→?Eu2+ conversion can occur during thermal annealing of fine-grained (d?=?25?nm) nanoparticles in the 200–800°C range, which is accompanied by an increase in their size within 40–189?nm. An important role of the exciton mechanism of Eu2+ luminescence excitation was revealed according to the temperature dependence of X-ray-excited luminescence spectra of CaF2:Eu nanoparticles of 114?nm size. The maximum of the X-ray-excited luminescence light output of CaF2:Eu nanophosphors in the Eu2+ ions’ emission band was traced out at 400–500°C annealing temperature and at the size of nanoparticles of 114–180?nm. The subsequent growth of the annealing temperatures, particularly in the 800–1000°C range, causes the reduction of X-ray-excited luminescence light output because of the increment of lattice defects’ concentration due to a sharp increase in the size of nanoparticles and their agglomeration.  相似文献   

17.
Single crystal α-Al2O3 wafers were implanted with 45 keV Zn ions up to a fluence of 1×1017 ions/cm2, and were then subjected to furnace annealing in oxygen atmosphere at different temperatures. Various techniques have been applied to study the creation of nanoparticles (NPs), defects and their thermal evolutions, as well as their effects on optical properties of Al2O3. Our results clearly show that Zn NPs have been synthesized in the as-implanted sample and they begin to be oxidized at 500 °C. Two broad photoluminescence bands appear in the Zn ion-implanted samples and their intensities depend on the annealing temperatures. The results have been interpreted in view of creation of the defects and NPs, Zn atoms diffusion as well as their thermal evolution during annealing.  相似文献   

18.
CaSO4:Eu with particle size in submicron range was synthesized. Radiation induced Eu3+↔Eu2+ conversion as well as thermal conversion was studied. The samples showed thermal conversion above 400 °C. However, no radiation induced conversion in submicron range particles was observed. Particles heated above 400 °C coalesce and when heated at 925 °C bigger particles of 20 μm size were formed. Optical microscopy of these particles reveals red inclusion of about 5 μm inside CaSO4 particle. It is speculated that the red inclusion is CaS:Eu2+.  相似文献   

19.
周美娇  张加驰  王育华 《物理学报》2012,61(7):74103-074103
对节能灯用BaMgAl10O17: Eu2+,Mn2+荧光粉的热劣化和紫外辐照劣化机理进行了对比研究. 发现热处理和紫外辐照处理均对BaMgAl10O17: Eu2+,Mn2+产生明显的发光劣化作用. 研究结果表明:热劣化主要涉及到Eu2+ 的氧化及其格位偏移, 而紫外辐照劣化与上述过程无关. 紫外辐照劣化主要源自高能紫外辐照使Eu2+ 处于更加不稳定的状态, 从而降低Eu2+ 的直接吸收和发射强度.  相似文献   

20.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号