首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hardness and Young's modulus were measured by nanoindentation on a series of electrodeposited nanocrystalline nickel and nickel–iron alloys. Hardness values showed a transition from regular to inverse Hall–Petch behaviour, consistent with previous studies. There was no significant influence of grain size on the Young's modulus of nanocrystalline nickel and nickel–iron alloys with grain sizes greater than 20?nm. The Young's modulus values for nanocrystalline nickel and nickel–iron alloys for grain sizes less than 20?nm were slightly reduced when compared to their conventional (randomly oriented) polycrystalline counterparts. The observed trend with decreasing grain size was found to be consistent with composite model predictions that consider the influence of intercrystalline defects. However, there was some notable variability of the measured values when compared to the model predictions. Three theoretical relationships were used to characterise the anisotropic elastic behaviour of these materials. As a result, texture was also considered to have an influence on the measured Young's modulus and used to explain some of the observed variability for the entire grain size range (9.8–81?nm).  相似文献   

2.
Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0?0?1] and [1?1?1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ′-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress–strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1?1?1] orientation when compared to [0?0?1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.  相似文献   

3.
4.
ABSTRACT

The dependence of the interactions of intermediate-size ½<111> self-interstitial atom (SIA) loops with an edge dislocation on strain rate and temperature was investigated by molecular dynamics (MD) simulations for the interatomic potential derived by Ackland et al. (A97). For low temperatures (T?=?1?K), the mechanisms of the interactions were in agreement with recent literature. It was shown that a second passing of the dislocation through the loop led to a different mechanism than the one that occurred upon first passing. Since these mechanisms are associated with different SIA loop sizes, and since the loop lost a number of SIAs upon first interaction, it was deduced that the dividing threshold between large and small loops (rendering them strong or weak obstacles, respectively) is at the vicinity of the loop size studied (169 SIAs). For higher temperatures (T?=?300?K), the strain rate dependence proved strong: for low strain rates, the dislocation absorbed the loop as a double super-jog almost immediately and continued its glide unimpeded. For a high strain rate, the dislocation was initially pinned due to the formation of an almost sessile segment leading to high critical stress.  相似文献   

5.
γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.  相似文献   

6.

In a lamellar TiAl alloy deformed at room temperature under an orientation that activates slip parallel to the interfaces, the nphase exhibits intralamellar dislocation networks parallel to the primary slip plane and entirely glissile in their habit plane. Their meshes are mainly rectangular with branches all coplanar, screw or near-screw in character and with Burgers vector of and types. Dislocation organization at and in the near-vicinity of these intralamellar networks suggests a reaction between a family of primary coplanar d011] dislocations that slip in the network habit plane and a family of dislocations that cross-slip from a plane inclined to the lamellae into the network. The reactions result in junctions with Burgers vector that subsequently transform into rectangular units. The presence of these networks is consistent with that of a residual elastic twist between adjacent nlamellae.  相似文献   

7.
8.
The universal expressions have been obtained for components of the tensor Green’s function of an elastically anisotropic hexagonal medium. In contrast to the classical expressions (the Lifshitz–Rosenzweig method), they do not contain uncertainties of the type 0/0 upon the transition to the isotropic approximation and hold true for any hexagonal crystal. As an example of their use, the displacement and strain fields created by an edge dislocation loop lying in the basal plane of the crystal have been calculated.  相似文献   

9.
10.
11.
The theoretical consideration of the sponteneous emission of γ-gravitons by excited nuclei lead us to the conclusion about the principle possibility of γ-graviton detection from cosmic and laboratory sources. The γ-graviton astronomy and geophysics can give new information about cosmic and geophysical processes.  相似文献   

12.
In this work,a new neutron and γ(n/γ) discrimination method based on an Elman Neural Network(ENN) is proposed to improve the discrimination performance of liquid scintillator(LS) detectors.Neutron andγ data were acquired from an EJ-335 LS detector,which was exposed in a ~(241)Am-~9Be radiation field.Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network(BPNN) as a control.The results show that the two methods have different n/γdiscrimination performances.Compared to the BPNN,the ENN provides an improved of Figure of Merit(FOM)in n/γ discrimination.The FOM increases from 0.907 ± 0.034 to 0.953 ± 0.037 by using the new method of the ENN.The proposed n/γ discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.  相似文献   

13.
In situ transmission electron microscopy observations of the dislocation motion at vicinity of the /' interfaces in a Ni-base superalloy have been performed. They allow to identify the elemental mechanisms, under stress and at different temperatures, of the deformation propagation across the interfaces. It is shown that some of the mechanisms already analyzed in the literature occur. Moreover, new processes are revealed such as the formation of small dislocation pile-ups on the /' interfaces. Such a configuration, which increases the local stress, favors the overcoming of the interface.These observations together with new considerations on stresses are taken into account for proposing a new equilibrium equation for a dislocation abutting on a /' interface. This equation involves all the stress components acting on a dislocation: the applied stress, the misfit stress, the friction stress, the stress concentration due to the dislocation pile-up and the image stress.  相似文献   

14.
15.
In previous Perturbed-Angular-Correlation (PAC) studies of the - emission of 111In probe nuclei in cold-worked or particle-irradiated nickel, it has been found that thermal annealing in the temperature regime of recovery stage III leads to the formation of so-called C-defects (Cubic defects). This is indicated by the occurrence of a new frequency of about 80 Mrad/s, in addition to the frequency (200 Mrad/s) that is due to 111In on substitutional sites. Obviously, the C-defects are complexes consisting of 111In and the intrinsic point-defect species that migrates freely in recovery stage III. Therefore, they have played an important rôle in the long-standing controversy on whether the recovery-stage-III defects are vacancies (one-interstitial model) or self-interstitials (two-interstitial model). The present paper reports on a novel experimental effort to reveal the nature of the C-defects by combining PAC studies on nickel samples differently pretreated in a systematic way, investigations of the Extended X-ray Absorption Fine Structure (EXAFS) on In-doped nickel, and measurements of the decay rate of 111In nuclei in the Electron-Capture-Induced Decay (ECID). On the basis of the results of these experiments it is concluded that the defects trapped by substitutional 111In atoms (Ins) in recovery stage III are self-interstitials (I), as expected according to the two-interstitial model. Moreover, there is evidence that the C-defects are In interstitials on tetrahedral sites (Ini) that form exclusively in the vicinity of the specimen surface from Ins – I pairs via the reaction Ins+I Ini.  相似文献   

16.
17.
18.
冉令坤  John P.Boyd 《中国物理 B》2008,17(3):1138-1146
This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian coordinates by using the Momentum-Casimir method. In the derivation, it is assumed that the transient disturbances satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space. The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory of wave-flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to diagnosing the interaction between the meso-scale convective system in front and the background flow.
It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Furthermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum density. The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results. Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized in virtue of the basic-state diabatic heating.  相似文献   

19.
The temperature dependences of the intensity of elastic diffuse neutron scattering from γ-FexNi100?x (x=57 and 68 at. %) alloy single crystals near basic reciprocal-lattice sites in the (110) plane are measured using a triaxial neutron spectrometer. New effects of instability of the γ-phase lattice with respect to long-wavelength (transverse and longitudinal) static atomic displacements have been detected. The displacements are found to depend on the iron concentration in the alloys and on temperature. The relations of these structural distortions to premartensitic phenomena and the invar effect in γ-FeNi alloys are discussed  相似文献   

20.
The γ-TiAl intermetallic compound with suitable alloying additions has shown considerable promise as a material for high-temperature applications. Diffusion studies in this alloy system are useful in assessment of their creep behaviour and structural stability in service conditions. Tracer diffusion coefficients of 51Cr and 54Mn in a γ-TiAl intermetallic compound containing 54.1 at. % aluminium were determined in the temperature range from 1095 to 1470?K. The temperature dependence of both the diffusing species follows a linear Arrhenius behaviour and can be expressed as D Cr?=?4.4?×?10?3exp(?350?kJ?mol?1/RT)?m2?s?1 and D Mn?=?1.2?×?10?3?×exp(?326?kJ?mol?1/RT)?m2?s?1. The data are analysed on the basis of empirical correlations between the diffusion and melting parameters applicable for conventional mono-vacancy diffusion mechanism in metals. It is concluded that impurity diffusion in γ-TiAl occurs through the migration of thermal vacancies via nearest-neighbour or next-nearest neighbour jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号