首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper, we present an alternative interpretation of propositional inquisitive logic as an epistemic logic of knowing how. In our setting, an inquisitive logic formula α being supported by a state is formalized as knowing how to resolve α (more colloquially, knowing how α is true) holds on the S5 epistemic model corresponding to the state. Based on this epistemic interpretation, we use a dynamic epistemic logic with both know-how and know-that operators to capture the epistemic information behind the innocent-looking connectives in inquisitive logic. We show that the set of valid know-how formulas corresponds precisely to the inquisitive logic. The main result is a complete axiomatization with intuitive axioms using the full dynamic epistemic language. Moreover, we show that the know-how operator and the dynamic operator can both be eliminated without changing the expressivity over models, which is consistent with the modal translation of inquisitive logic existing in the literature. We hope our framework can give an intuitive alternative interpretation to various concepts and technical results in inquisitive logic, and also provide a powerful and flexible tool to handle both the inquisitive reasoning and declarative reasoning in an epistemic context.  相似文献   

2.
The semantics of modal logics for reasoning about belief or knowledge is often described in terms of accessibility relations, which is too expressive to account for mere epistemic states of an agent. This paper proposes a simple logic whose atoms express epistemic attitudes about formulae expressed in another basic propositional language, and that allows for conjunctions, disjunctions and negations of belief or knowledge statements. It allows an agent to reason about what is known about the beliefs held by another agent. This simple epistemic logic borrows its syntax and axioms from the modal logic KD. It uses only a fragment of the S5 language, which makes it a two-tiered propositional logic rather than as an extension thereof. Its semantics is given in terms of epistemic states understood as subsets of mutually exclusive propositional interpretations. Our approach offers a logical grounding to uncertainty theories like possibility theory and belief functions. In fact, we define the most basic logic for possibility theory as shown by a completeness proof that does not rely on accessibility relations.  相似文献   

3.
We discuss a propositional logic which combines classical reasoning with constructive reasoning, i.e., intuitionistic logic augmented with a class of propositional variables for which we postulate the decidability property. We call it intuitionistic logic with classical atoms. We introduce two hypersequent calculi for this logic. Our main results presented here are cut-elimination with the subformula property for the calculi. As corollaries, we show decidability, an extended form of the disjunction property, the existence of embedding into an intuitionistic modal logic and a partial form of interpolation.  相似文献   

4.
In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 0 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show that these systems are appropriate for interpreting □ as “is provable in classical logic”. This allows us to recover the theorems of propositional classical logic within three sub-classical modal systems.  相似文献   

5.
In standard epistemic logic, the names and the existence of agents are usually assumed to be common knowledge implicitly. This is unreasonable for various applications in computer science and philosophy. Inspired by term-modal logic and assignment operators in dynamic logic, we introduce a lightweight modal predicate logic where names can be non-rigid, and the existence of agents can be uncertain. The language can handle various de dicto/de re distinctions in a natural way. We characterize the expressive power of our language, obtain complete axiomatisations of the logics over several classes of varying-domain/constant-domain epistemic models, and show their (un)decidability.  相似文献   

6.
This paper introduces an epistemic model of a boundedly rational agent under the two assumptions that (i) the agent’s reasoning process is in accordance with the model but (ii) the agent does not reflect on these reasoning processes. For such a concept of bounded rationality a semantic interpretation by the possible world semantics of the Kripke (1963) type is no longer available because the definition of knowledge in these possible world semantics implies that the agent knows all valid statements of the model. The key to my alternative semantic approach is the extension of the method of truth tables, first introduced for the propositional logic by Wittgenstein (1922), to an epistemic logic so that I can determine the truth value of epistemic statements for all relevant truth conditions. In my syntactic approach I define an epistemic logic–consisting of the classical calculus of propositional logic plus two knowledge axioms–that does not include the inference rule of necessitation, which claims that an agent knows all theorems of the logic. As my main formal result I derive a determination theorem linking my semantic with my syntactic approach. The difference between my approach and existing knowledge models is illustrated in a game-theoretic application concerning the epistemic justification of iterative solution concepts.  相似文献   

7.
This paper introduces an epistemic model of a boundedly rational agent under the two assumptions that (i) the agent’s reasoning process is in accordance with the model but (ii) the agent does not reflect on these reasoning processes. For such a concept of bounded rationality a semantic interpretation by the possible world semantics of the Kripke (1963) type is no longer available because the definition of knowledge in these possible world semantics implies that the agent knows all valid statements of the model. The key to my alternative semantic approach is the extension of the method of truth tables, first introduced for the propositional logic by Wittgenstein (1922), to an epistemic logic so that I can determine the truth value of epistemic statements for all relevant truth conditions. In my syntactic approach I define an epistemic logic–consisting of the classical calculus of propositional logic plus two knowledge axioms–that does not include the inference rule of necessitation, which claims that an agent knows all theorems of the logic. As my main formal result I derive a determination theorem linking my semantic with my syntactic approach. The difference between my approach and existing knowledge models is illustrated in a game-theoretic application concerning the epistemic justification of iterative solution concepts.  相似文献   

8.
Based on a modification of Moss' and Parikh's topological modal language [8], we study a generalization of a weakly expressive fragment of a certain propositional modal logic of time. We define a bimodal logic comprising operators for knowledge and nexttime. These operators are interpreted in binary computation structures. We present an axiomatization of the set T of theorems valid for this class of semantical domains and prove – as the main result of this paper – its completeness. Moreover, the question of decidability of T is treated.  相似文献   

9.
Quantum information gives rise to some puzzling epistemic problems that can be interestingly investigated from a logical point of view. A characteristic example is represented by teleportation phenomena, where knowledge and actions of observers (epistemic agents) play a relevant role. By abstracting from teleportation, we propose a simplified semantics for a language that consists of two parts:
  1. the quantum computational sub-language, whose sentences α represent pieces of quantum information (which are supposed to be stored by some quantum systems)
  2. the classical epistemic sub-language, whose atomic sentences have the following forms: agent a has a probabilistic information about the sentence α; agent a knows the sentence α.
Interestingly enough, some conceptual difficulties of standard epistemic logics can be avoided in this framework.  相似文献   

10.
We study implicational formulas in the context of proof complexity of intuitionistic propositional logic (IPC). On the one hand, we give an efficient transformation of tautologies to implicational tautologies that preserves the lengths of intuitionistic extended Frege (EF) or substitution Frege (SF) proofs up to a polynomial. On the other hand, EF proofs in the implicational fragment of IPC polynomially simulate full intuitionistic logic for implicational tautologies. The results also apply to other fragments of other superintuitionistic logics under certain conditions.In particular, the exponential lower bounds on the length of intuitionistic EF proofs by Hrube? (2007), generalized to exponential separation between EF and SF systems in superintuitionistic logics of unbounded branching by Je?ábek (2009), can be realized by implicational tautologies.  相似文献   

11.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

12.
An integrated approach to truth-gaps and epistemic uncertainty is described, based on probability distributions defined over a set of three-valued truth models. This combines the explicit representation of borderline cases with both semantic and stochastic uncertainty, in order to define measures of subjective belief in vague propositions. Within this framework we investigate bridges between probability theory and fuzziness in a propositional logic setting. In particular, when the underlying truth model is from Kleene's three-valued logic then we provide a complete characterisation of compositional min–max fuzzy truth degrees. For classical and supervaluationist truth models we find partial bridges, with min and max combination rules only recoverable on a fragment of the language. Across all of these different types of truth valuations, min–max operators are resultant in those cases in which there is only uncertainty about the relative sharpness or vagueness of the interpretation of the language.  相似文献   

13.
In this paper, we study the temporal logic S4Dbr with two temporal operators “always” and “eventually.” An equivalent sequent calculus is presented with formulae as modal clauses or modal clauses starting with operator “always.” An upper bound of deduction tree is given for propositional logic. A theorem prover for propositional logic is written in SWI-Prolog. Published in LietuvosMatematikos Rinkinys, Vol. 46, No. 2, pp. 203–214, April–June, 2006.  相似文献   

14.
We introduce a framework of approximable disjunctive propositional logic, which is the logic that results from a disjunctive propositional logic by adding an additional connective. The Lindenbaum algebra of this logic is an approximable dD-algebra. We show that for any approximable dD-algebra, its approximable filters ordered by set inclusion form a continuous L-domain. Conversely, every continuous L-domain can be represented as an approximable dD-algebra. Moreover, we establish a categorical equivalence between the category of approximable dD-algebras with approximable dD-algebra morphisms and that of continuous L-domains with Scott-continuous functions. This extends Abramsky's Domain Theory in Logical Form to the world of continuous L-domains. As an application, we give an affirmative answer to an open problem of Chen and Jung.  相似文献   

15.
In this paper we develop an abstract theory of adequacy. In the same way as the theory of consequence operations is a general theory of logic, this theory of adequacy is a general theory of the interactions and connections between consequence operations and its sound and complete semantics. Addition of axioms for the connectives of propositional logic to the basic axioms of consequence operations yields a unifying framework for different systems of classical propositional logic. We present an abstract model-theoretical semantics based on model mappings and theory mappings. Between the classes of models and theories, i.e., the set of sentences verified by a model, it obtains a connection that is well-known within algebra as Galois correspondence. Many basic semantical properties can be derived from this observation. A sentence A is a semantical consequence of T if every model of T is also a model of A. A model mapping is adequate for a consequence operation if its semantical inference operation is identical with the consequence operation. We study how properties of an adequate model mapping reflect the properties of the consequence operation and vice versa. In particular, we show how every concept of the theory of consequence operations can be formulated semantically.  相似文献   

16.
In this exploratory paper we propose a framework for the deduction apparatus of multi-valued logics based on the idea that a deduction apparatus has to be a tool to manage information on truth values and not directly truth values of the formulas. This is obtained by embedding the algebraic structure V defined by the set of truth values into a bilattice B. The intended interpretation is that the elements of B are pieces of information on the elements of V. The resulting formalisms are particularized in the framework of fuzzy logic programming. Since we see fuzzy control as a chapter of multi-valued logic programming, this suggests a new and powerful approach to fuzzy control based on positive and negative conditions.  相似文献   

17.
The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK‐logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK‐logic with negation by a family of connectives implicitly defined by equations and compatible with BCK‐congruences. Many of the logics in the current literature are natural expansions of BCK‐logic with negation. The validity of the analogous of Glivenko theorem in these logics is equivalent to the validity of a simple one‐variable formula in the language of BCK‐logic with negation. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We give a simple proof-theoretic argument showing that Glivenko’s theorem for propositional logic and its version for predicate logic follow as an easy consequence of the deduction theorem, which also proves some Glivenko type theorems relating intermediate predicate logics between intuitionistic and classical logic. We consider two schemata, the double negation shift (DNS) and the one consisting of instances of the principle of excluded middle for sentences (REM). We prove that both schemata combined derive classical logic, while each one of them provides a strictly weaker intermediate logic, and neither of them is derivable from the other. We show that over every intermediate logic there exists a maximal intermediate logic for which Glivenko’s theorem holds. We deduce as well a characterization of DNS, as the weakest (with respect to derivability) scheme that added to REM derives classical logic.  相似文献   

19.
A bipolar model of assertability and belief   总被引:1,自引:0,他引:1  
Valuation pairs are introduced as a bipolar model of the assertability of propositions. These correspond to a pair of dual valuation functions, respectively, representing the strong property of definite assertability and the dual weaker property of acceptable assertability. In the case where there is uncertainty about the correct valuation pair for a language then a probability distribution is defined on possible valuation pairs. This results in two measures, μ+ giving the probability that a sentence is definitely assertable, and μ giving the probability that a sentence is acceptable to assert. It is shown that μ+ and μ can be determined directly from a two dimensional mass function m defined on pairs of sets of propositional variables. Certain natural properties of μ+ and μ are easily expressed in terms of m, and in particular we introduce certain consonance or nestedness assumptions. These capture qualitative information in the form of assertability orderings for both the propositional variables and the negated propositional variables. On the basis of these consonance assumptions we show that label semantics, intuitionistic fuzzy logic and max-min fuzzy logic can all be viewed as special cases of this bipolar model. We also show that bipolar belief measures can be interpreted within an interval-set model.  相似文献   

20.
We show that as long as the propositional constants t and f are not included in the language, any language-preserving extension of any important fragment of the relevance logics R and RMI can have only classical tautologies as theorems (this includes intuitionistic logic and its extensions). This property is not preserved, though, if either t or f is added to the language, or if the contraction axiom is deleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号