首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role and the nature of the continuum in Surface Enhanced Raman Spectroscopy (SERS) are unclear. Here, two-dimensional (2D) covariance and correlation analysis is applied to single molecule SERS spectra on silver colloids with and without rhodamine 6G (native colloid). The resulting 2D covariance and correlation maps show that the sharp molecular Raman peaks from rhodamine 6G and the molecule responsible for the SERS peaks from the native colloid are correlated to different continua even though both continua are present in each data set. This suggests that two distinct active sites on the silver colloids produce the two different continua, and that each site has some molecular specificity.  相似文献   

2.
Comparatively few studies have explored the ability of Raman spectroscopy for the quantitative analysis of microbial secondary metabolites in fermentation broths. In this study we investigated the ability of Raman spectroscopy to differentiate between different penicillins and to quantify the level of penicillin in fermentation broths. However, the Raman signal is rather weak, therefore the Raman signal was enhanced using surface enhanced Raman spectroscopy (SERS) employing silver colloids. It was difficult by eye to differentiate between the five different penicillin molecules studied using Raman and SERS spectra, therefore the spectra were analysed by multivariate cluster analysis. Principal components analysis (PCA) clearly showed that SERS rather than the Raman spectra produced reproducible enough spectra to allow for the recovery of each of the different penicillins into their respective five groups. To highlight this further the first five principal components were used to construct a dendrogram using agglomerative clustering, and this again clearly showed that SERS can be used to identify which penicillin molecule was being analysed, despite their molecular similarities. With respect to the quantification of penicillin G it was shown that Raman spectroscopy could be used to quantify the amount of penicillin present in solution when relatively high levels of penicillin were analysed (>50 mM). By contrast, the SERS spectra showed reduced fluorescence, and improved signal to noise ratios from considerably lower concentrations of the antibiotic. This could prove to be advantageous in industry for monitoring low levels of penicillin in the early stages of antibiotic production. In addition, SERS may have advantages for quantifying low levels of high value, low yield, secondary metabolites in microbial processes.  相似文献   

3.
表面增强拉曼光谱(SERS)技术可极大增强传统拉曼光谱的信号强度,从而拓展拉曼光谱的应用范围.针对SERS技术在分析对象、分析环境的普适性和分析效率方面的限制,本文设计并发展了一种透明、柔性、自支撑SERS基底的制备、保存和使用方法.该基底由聚合物聚甲基丙烯酸甲酯(PMMA)和在其表面镶嵌的金属纳米结构组成,可以通过背入射法用于任意形貌样品表面的直接和在线检测.柔性SERS(Ag)基底在R6G水溶液表面的检测限小于1pmol/L.  相似文献   

4.
An optofluidic device for surface enhanced Raman spectroscopy   总被引:2,自引:0,他引:2  
Wang M  Jing N  Chou IH  Cote GL  Kameoka J 《Lab on a chip》2007,7(5):630-632
We have developed an optofluidic device that improves the sensitivity of surface enhanced Raman spectroscopy (SERS) when compared to other SERS approaches. This device has a pinched and step microchannel-nanochannel junction that can trap and assemble nanoparticles/target molecules into optically enhanced SERS active clusters by using capillary force. These SERS active clusters provide an electromagnetic enhancement factor of approximately 10(8). In addition, due to the continuous capillary flow that can transport nanoparticles/target molecules into the junction sites, the numbers of nanoparticles/target molecules and SERS active sites are increased. As a result, the detection limit of SERS for adenine molecules was better than 10 pM.  相似文献   

5.
Surface-enhanced Raman scattering(SERS) is applied to detect the concentration of carbendzim(CBZ) in tea leaves. Au colloid is selected and used for active surfaces, and the extraction conditions are optimized in the experiment. The linearity range for the SERS intensity and the concentration of CBZ is found to be0.5 to 8 mg kgà1. The detection limit for CBZ is 0.1 mg kgà1and its recovery in tea samples is 72.3%. The detection results for CBZ using this method are compared with those of HPLC, and no obvious difference can be found. In addition, by dripping the condensed Au colloid on the tea leaves, the proposed SERS approach could be used to the in-situ determination of the half life period of CBZ on tea leaves.  相似文献   

6.
表面增强拉曼光谱在食品安全分析中的应用   总被引:1,自引:0,他引:1  
拉曼光谱技术具有样品用量少、快速高效、无损分析等特点,表面增强拉曼光谱克服了常规拉曼光谱灵敏度低的缺点,可以获得更多物质结构信息,在现场快速筛查、检测和鉴别农兽残、限用或禁用添加剂分析检测中具有广阔的应用前景。本文综述了表面增强拉曼光谱在食品中农药残留、兽药残留和限/禁用添加剂检测中的研究进展,并展望了其发展前景。  相似文献   

7.
In the present contribution, we demonstrated that surface-enhanced resonance Raman scattering spectra from single green fluorescent proteins (GFPs) were obtained. The most important findings are the direct detection of the conversion between a deprotonated and a protonated form of the chromophore at the single-molecule level via the corresponding vibrational fingerprints, and the fact that the enhanced green fluorescent protein (EGFP) also shows a high surface enhanced resonance Raman scattering (SERRS) signal. Our findings show the potential of the technique to study structural dynamics of protein molecules at a single-molecule level.  相似文献   

8.
Chen J  Abell J  Huang YW  Zhao Y 《Lab on a chip》2012,12(17):3096-3102
We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.  相似文献   

9.
A benzotriazole dye has been attached to a heme protein via a Michael addition and the unique potential of surface enhanced resonance Raman scattering (SERRS) to provide informative in situ recognition of more than one label on one protein demonstrated.  相似文献   

10.
The temperature dependent surface enhanced Raman (SER) spectra of piperidine in AgBr sols are presented with emphasis on the study of the intensity variation as the temperature increases. Most of the SER intensities decrease as the temperature increases. This is interpreted as due to the increase of the adsorption distance from the sol particle surface. It is also inferred from the various slopes of the decrease in intensity of various modes that there is variation of the SER effect in the dimension of a single bond, i.e. in 1.5 Å. Moreover, from the temperature dependent SER spectra, it is concluded that due to thermal agitation, both axial and equatorial piperidine molecules are adsorbed on the sol particle surface as the temperature increases. The energy difference between these two forms are calculated to be around 20 kcal/mol which is believed to be larger than that in solution due to the adsorption effect. Besides, two peaks at 1390 and 1231 cm−1 show an anomalous positive thermal effect which could be due to the very complicated SERS mechanism. Finally, it is discussed that the temperature dependent SERS study possesses potentiality in revealing the chemical structure near the sol particle and noble metal electrode surfaces.  相似文献   

11.
Time and concentration dependent surface enhanced Raman spectra of pyridine adsorbed on silver bromide colloids are studied. It is found that the time  相似文献   

12.
13.
The results of investigations of several new active silver substrates and some previously reported active silver substrates for surface enhanced Raman spectrometry (SERS) using a Raman microprobe are given. Filter-papers of different composition and porosity, silver membranes and glass slides are evaluated as supports for SERS active substrates. Methods of silver preparation include evaporation and chemical reduction. The Raman microprobe facilitates the acquisition of SER spectra of the adsorbate over the metal microstructure being observed on a TV monitor. This capability allows the establishment of practical relationships between the surface morphology and SERS activity which can be used as guidelines for SERS experiments with the microprobe. For the most monodisperse substrates, it is possible to establish a linear relationship between SERS intensity and adsorbate concentration. In the lower extreme of the calibration graph, the amount of adsorbate being observed under the microscope objective is only 0.3 amol or 1.9 × 105 molecules.  相似文献   

14.
Summary The determination of transuranic (TRU) content in nuclear wastes, reactor materials, process solutions, and various other matrices is required in support of material assessment, environmental restoration, and waste processing activities. We have found that direct measurement of TRU is possible using surface passivated ion implanted planar silicon diode detectors. The performance and durability of modern silicon diodes enables direct detection of alpha-particles, with retention of some spectral information, through small air gaps or under direct contact with liquid or solid samples. We will present results on the performance of silicon diode detectors for the determination of TRU in liquids.  相似文献   

15.
16.
In this work, geometrical optimizations of Ag disc on pillar (DOP) hybrid plasmonic nanostructures were conducted and allowed us to achieve reproducible average enhancement factors of 1 × 10(9) and greater.  相似文献   

17.
Single molecule level detection of the near-infrared fluorescent protein allophycocyanin (APC) has been achieved using surface enhanced resonance Raman scattering (SERRS). The detection limit using the peak height of the 440 cm(-1) band was 1 x 10(-13) mol l(-1), compared to 2 x 10(-12) mol l(-1) for the fluorescence peak at 660 nm.  相似文献   

18.
We reexamine the Herzberg-Teller theory of charge-transfer contributions to the theory of surface enhanced Raman scattering (SERS). In previous work, the Kramers-Heisenberg-Dirac framework was utilized to explain many of the observed features in SERS. However, recent experimental and theoretical developments suggest that we revise the theory to take advantage of the time-dependent picture of Raman scattering. Results are obtained for molecular adsorption on nanoparticles in both the strong confinement limit and the weak confinement limit. We show that the Herzberg-Teller contributions to the charge-transfer effect in SERS display a resonance at the molecule-to-metal or metal-to-molecule transition while retaining the selection rules associated with normal Raman spectroscopy (i.e., harmonic oscillator, as opposed to Franck-Condon overlaps). The charge-transfer contribution to the enhancement factor scales as Gamma(-4), where Gamma is the homogeneous linewidth of the charge-transfer transition, and thus is extremely sensitive to the magnitude of this parameter. We show that the Herzberg-Teller coupling term may be associated with the polaron-coupling constant of the surface phonon-electron interaction. A time-dependent expression for the Raman amplitude is developed, and we discuss the implications of these results for both metal and semiconductor nanoparticle surfaces.  相似文献   

19.
The pressure dependence of the reorientational correlation function for chloroform has been measured by analysis of the Raman 3019 cm? 1 A1 CH stretching lineshape at 1, 1000, and 2000 bar and 23°C. These reorientational correlation functions were obtained using the method of spectral Fourier deconvolution introduced by Bratos. The results are compared to the correlation times obtained from the NMR deuteron T1 relaxation times for CDCl3 and those calculated from high pressure viscosity measurements.  相似文献   

20.
The molecular aspect of the Raman vibrational selection rules allows for the molecular structural and reactivity determinations of metal oxide catalytic active sites in all types of oxide catalyst systems (supported metal oxides, zeolites, layered hydroxides, polyoxometalates (POMs), bulk pure metal oxides, bulk mixed oxides and mixed oxide solid solutions). The molecular structural and reactivity determinations of metal oxide catalytic active sites are greatly facilitated by the use of isotopically labeled molecules. The ability of Raman spectroscopy to (1) operate in all phases (liquid, solid, gas and their mixtures), (2) operate over a very wide temperature (-273 to >1000 °C) and pressure (UHV to ?100 atm) range, and (3) provide molecular level information about metal oxides makes Raman spectroscopy the most informative characterization technique for understanding the molecular structure and surface chemistry of the catalytic active sites present in metal oxide heterogeneous catalysts. The recent use of hyphenated Raman spectroscopy instrumentation (e.g., Raman-IR, Raman-UV-vis, Raman-EPR) and the operando Raman spectroscopy methodology (e.g., Raman-MS and Raman-GC) is allowing for the establishment of direct structure-activity/selectivity relationships that will have a significant impact on catalysis science in this decade. Consequently, this critical review will show the growth in the use of Raman spectroscopy in heterogeneous catalysis research, for metal oxides as well as metals, is poised to continue to exponentially grow in the coming years (173 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号