首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Steam assisted dry gel conversion method was employed for the synthesis of Si-MCM-41 from ternary SiO2:CTAOH:H2O systems wherein fumed silica was used as a source of silica. The influence of synthesis time, molar ratios of CTAOH/SiO2 in dry gel and the water content at the bottom of autoclave on the quality and formation of mesophases has been investigated. Powder XRD, N2 adsorption–desorption, TEM and hydrothermal stability test were the techniques used for sample characterization. Keeping molar ratio of CTAOH/SiO2 constant, shorter synthesis time, lower unit cell parameter and d spacing were observed when steam assisted dry gel conversion method was employed in place of conventional hydrothermal method. There exists an optimum lower limit for water content at the bottom of autoclave for reducing the synthesis period. Keeping synthesis temperature and CTAOH/SiO2 molar ratio fixed, Si-MCM-41 with improved hydrothermal stability was obtained by steam assisted dry gel conversion route.  相似文献   

2.
Nano-crystalline La0.8Sr0.2Co0.5Fe0.5O3±δ powder has been successfully synthesized by microwave assisted sol–gel (MWSG) method. The decomposition and crystallization behavior of the gel-precursor was studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis. From the result of FT-IR and X-ray diffraction patterns, it is found that a perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was formed by irradiating the precursor at 700 W for 3 min, but the well-crystalline perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was obtained at 700 W for 35 min. Morphological and specific area analysis of the powder were done by transmission electron microscopy (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The surface areas measured was 38.9 m2/g and the grain size was ∼23 nm. Electrochemical properties of pure LSCF cathode on YSZ electrolyte at intermediate temperatures were investigated by using AC impedance analyzer, which shows a low area specific resistance (0.077 Ω cm2 at 1073 K and 0.672 Ω cm2 at 953 K). Moreover, the synthesis period of 20 h usually observed for conventional heating mode is reduced to a few minutes. Thus, the MWSG method is proved to be a novel, extremely facile, time-saving and energy-efficient route to synthesize LSCF powders.  相似文献   

3.
A sol–gel auto-combustion method was investigated to incorporate small amounts of additives of Cu and Bi uniformly into soft magnetic MnZn-ferrite nanoparticles, which were prepared by Fe(NO3)3·9H2O, Mn(NO3)2 and Zn(NO3)2·6H2O dissolved in water and citric acid. The powder was characterized by the X-ray diffraction analysis and transmission electron microscope method. The effects of nano-particle sized powders in microstructure development and adding CuO–Bi2O3 into MnZn-ferrite on phase formation, densification process as well as magnetic properties were studied by scanning electron microscope and vibrating sample magnetometer techniques. The sample without additive can be sintered well at 930 °C, while the samples with a small amount of the additive can be sintered at less than 900 °C. Obviously, the micron-sized powders exhibited high sintering activity. It was also found that CuO–Bi2O3 additive promoted the growth of grains and improved magnetic properties. The permeability and the saturation magnetization were improved substantially by adding CuO–Bi2O3 into MnZn-ferrite and the sintering temperature was lowered to 875 °C, which may be associated with the redistribution of cations on the tetrahedral (A) sites and octahedral (B) sites within the spinel lattice.  相似文献   

4.
Single-phase zinc aluminate (ZnAl2O4) nanoparticles with the spinel structure was successfully obtained by the sol–gel method. The nanoparticles are crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminum ions changes with heat treatment temperature, as observed by FT-IR and also by 27Al solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. The photoluminescence spectra show that the emission of pristine ZnAl2O4 may change depending on the calcining temperature due to the quantum size effect.  相似文献   

5.
Multilayered alumina film was deposited onto metallic substrate using cycles of dip-coating method. The film thickness was found not always growing linearly with the increase of the number of dipping cycles, and even a zero-growth in thickness was observed after 20 cycles of dip coatings. This phenomenon was found to be attributed to the dissolving behavior of alumina gel material in original sol. A heat treatment at a temperature higher than 230 °C was found to be able to effectively lower the dissolvability of Al2O3 gel material, but an extra high temperature, i.e., 600 °C led to the formation of cracks in the multilayered film due to the increase of interfacial tension force. It was examined by IR and XRD analyses that a heat treatment at 250 °C for 10 min before each coating process could yield an amorphous multilayered film with no crack formed after calcinations at 600 °C. A crack-free Al2O3 film with a thickness up to 2 μm after 22 cycles of dip coating process could be produced and it showed an excellent antioxidation performance for steel substrate.  相似文献   

6.
Hollow LiNiO2 fibers have been prepared with a capillary spinneret electrospinning technique combined with the sol–gel method, and the possible mechanism for the fabrication of the hollow fibers was discussed. The xerogel fibers and those calcined at different temperatures were characterized by thermogravimetric (TG) analysis, X-ray diffractometry (XRD), Fourier transform infrared (FT-IR) spectrum, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and etc. The Polyvinyl Pyrrolidone (PVP) has an important role in the formation of hollow LiNiO2 fibers.  相似文献   

7.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

8.
The Ni/ZrO2/SiO2 aerogels catalysts were synthesized via three different routes: (i) impregnation ZrO2–SiO2 composite aerogels with a aqueous solution of Ni(NO3)2, (ii) impregnation SiO2 aerogels with a mixed aqueous solution of Ni(NO3)2 and ZrO(NO3)2 · 2H2O, (iii) one-pot sol–gel procedure from precursors Ni(NO3)2/ZrO(NO3)2 · 2H2O/Si(OC2H5)4. These catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), ammonia temperature-programmed desorption (NH3-TPD), N2 adsorption–desorption isotherms and Fourier transform infrared (FT-IR). The Liquid-phase hydrogenation of maleic anhydride (MA) was performed over these catalysts. The results revealed that the different preparation routes result in a difference between the obtained samples, concerning the crystal structure and composition, surface acidity, mixed level of each component, texture, and catalytic selectivity.  相似文献   

9.
Aimed at the increasement of ER effects, a novel composite, urea doped-TiO2 particles (TU) were prepared by using a modified sol–gel method. The structure and morphology of the TU particles were observed and analyzed by scanning electron micrpscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry(FT-IR) and X-ray photoelectron spectrum (XPS). The dielectric properties of the TU particles and the ER effects based on the TU particles were investigated. The influence of wettability on the ER performance between the particles and silicone oil was examined.  相似文献   

10.
The new alkoxysilyl-functionalized alkynes [HC≡CCH2N(H)C(=O)N(H)(CH2)3Si(OEt)3] and [HC≡C(C6H4)–N(H)C(=O)N(H)(CH2)3Si(OEt)3] have been synthesized using literature methods. These have been reacted with Fe3(CO)12, Ru3(CO)12 and Co2(CO)8. With the iron carbonyl only decomposition was observed: with Ru3(CO)12 splitting of the alkynes into their parent components and formation of the complexes (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3], (μ-H)Ru3(CO)9[C–C(C6H4)NH2] and (μ-H)2Ru3(CO)9[HC–CCH3] occurred. Finally, with Co2(CO)8 formation of complexes Co2(CO)6(HC2R) R=(C6H4)NH2, CH2NH(CO)NH(CH2)3Si(OEt)3, (C6H4)NH(CO)NH(CH2)3Si(OEt)3 containing the intact alkynes could be obtained.  相似文献   

11.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

12.
The effects of the chelating agent on the thermal evolution of SrBi2Ta2O9 precursor powders were investigated. The precursor solutions were prepared from non-hydrolyzing precursors of bismuth and strontium and a tantalum alkoxide. The utilization of diethanolamine or triethanolamine as chelating agent was found to produce the segregation of metallic bismuth in the as-prepared powders, which led to the formation of a multiphase system. On the other hand, acetoin, one of the α-hydroxyketones, showed outstanding characteristics for the low-temperature synthesis of SrBi2Ta2O9: elimination of residual organics at low temperature, an earlier onset of crystallization, and no segregation of secondary phases during the whole crystallization process.  相似文献   

13.
To obtain porous TiO2 film, the precursor sol was prepared by hydrolysis of Ti isopropoxide and then complexed with trehalose dihydrate. The porous TiO2 film was fabricated by the dip-coating technique on glass substrates using this solution. The TiO2 film was calcined at 500 °C. The maximum thickness of the film from one-run dip-coating was ca. 740 nm. The film was composed of nanosized particle and pores. The porosity of the TiO2 film was increased by addition of trehalose dihydrate to the sol. The porous TiO2 films were calcined at different temperatures. The effects of calcination temperature on the microstructure of the porous TiO2 film were investigated. The porous film prepared from sol containing trehalose still kept the porous structure after calcination at 950 °C. The phase transition temperature of the film from anatase to rutile was shifted from 650 to 700 °C by addition of trehalose to the sol.  相似文献   

14.
Powders of composition Ni3(XO4)2 with X = P and V were synthesized by both the ceramic conventional and the Pechini-type in situ polymerizable complex (IPC) method. The Pechini-type IPC technique produces these materials as single phases at reduced temperatures (750–810 °C) as opposed to the conventional solid-state reaction methods in which processing temperatures higher than 800 °C are usually required to obtain a single-phase of these materials. Reflections peaks of the samples obtained in both cases can be indexed well with the standard patterns for Ni3(PO4)2 and Ni3(VO4)2 compounds. The lattice parameters of these materials were calculated by the Rietveld refinement method from X-ray diffraction data (XRD). The average crystal size as well as the crystallinity and morphology of the powder samples were characterized by scanning electron microscopy (SEM). The results show a clearly minor particle size by using the Pechini-IPC method than the ceramic one. Moreover, the magnetic behaviour was studied on powered samples by using magnetic susceptibility data.  相似文献   

15.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

16.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

17.
Zinc nitrate and citric acid were used to prepare ZnO sol. ZnO and ZnAl2O4 coated aluminum borate whiskers were separately prepared by a sol–gel process. The results show that ZnO forms when ZnO xerogel is calcined at 500 °C and it does not undergo any phase transformation in the range of 500 and 1000 °C during calcinations. In ZnO xerogel coated aluminum borate whiskers system, a large amount of heat, gas and pores are produced during the heating process. When ZnO xerogel coated aluminum borate whiskers are calcined at 500 °C, ZnO can be uniformly coated on the surface of the whikers and the coated whiskers can be easily dispersed in distilled water through an ultrasonic vibration apparatus. During the calcination of ZnO coated whiskers at 1000 °C, ZnO reacts with the whiskers and ZnAl2O4 forms on the surface of aluminum borate whiskers.  相似文献   

18.
Ferroelectric thin films of strontium bismuth tantalate (SBT) have been fabricated by a chemical solution deposition technique using non-hydrolyzing precursors. Strontium acetate, bismuth nitrate and tantalum ethoxide were used as precursor materials, with methanol and glacial acetic as solvents. We investigate the effects of the precursor chemistry, by the selection of the chelating agent, on the elimination of residual organic compounds, thermal evolution of phase formation, and microstructure evolution of derived films. We found that the utilization of alkanolamines as chelating agent produce the segregation of metallic bismuth in as-prepared powders. On the other hand, acetoin, one of the hydroxyketones, showed the elimination of residual organics at low temperature, an earlier onset of crystallization, and no segregation of secondary phases during the whole crystallization process. A comparative investigation of the surface microstructure, grain size distribution, crystallinity, and degree of crystal orientation of films fabricated with the different chelating agents is presented. The dielectric and ferroelectric properties of films prepared with acetoin are investigated.  相似文献   

19.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

20.
In this work the synthesis of CoFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposites was studied via the sol–gel method, using the polymerized complex route. The polymerized precursors obtained by the reaction of citric acid, ethylene glycol, tetraethylorthosilicate, ferric nitrate, and cobalt nitrate or nickel chloride were characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. NMR and IR spectra of the precursors, without and with metallic ions, show the formation of polymeric chains with ester and ether groups and complexes of metal-polymeric precursor. The nanocomposites were obtained by the thermal decomposition of the organic fraction and characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). XRD patterns show the formation of CoFe2O4 and NiFe2O4 in an amorphous silica matrix above 400 °C in both cases. When the calcination temperature was 800 °C the particle size of the crystalline phases, calculated using the Scherrer equation, reached ∼35 nm for the two oxides. VSM plots show the ferrimagnetic behavior that is expected for this type of magnetic material; the magnetization at 12.5 KOe of the CoFe2O4-SiO2 and NiFe2O4-SiO2 compounds was 29.5 and 17.4 emu/g, respectively, for samples treated at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号