首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas phase hydrodechlorination of methanolic and mixed methanol/water solutions of 2-chlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol has been studied at 573 K over nickel/silica catalysts of varying (1.5–20.3 wt.% Ni) nickel loading. Each catalyst was 100% selective in promoting hydrodechlorination: the variation of catalytic activity and selectivity with time-on-stream is illustrated and catalyst deactivation is addressed. Dechlorination is quantified in terms of specific rate constants, phenol selectivity/yield and chlorine removal efficiencies. Increasing the nickel loading resulted in a marked increase in dechlorination efficiency while the introduction of water into the feed lowered the activity.  相似文献   

2.
A rotating catalyst contact reactor (RCCR) was developed which consisted of palladized bacterial cellulose immobilized on acrylic discs for hydrodechlorination of pentachlorophenol (PCP). More than 99% of 40 mg L(-1) PCP was dechlorinated to phenol in the presence of hydrogen in batch mode at initial pH values of 5.5 and 6.5 within 2 h of reaction with stoichiometric release of free chloride. The rate of PCP dechlorination was found to be independent of rotational speed of discs. PCP (40 mg L(-1)) hydrodechlorination experiments were also conducted using RCCR in continuous flow mode at hydraulic retention times of 1 and 2 h. The average outlet PCP concentrations revealed that liquid phase in RCCR closely resembled that of a continuous flow complete mix reactor (CFMR). Approximately 12 and 11 L of 40 mg L(-1) PCP (pH 6.5) could be treated in RCCR with 99 and 80% efficiencies in batch and continuous flow modes, respectively without any appreciable loss of the catalytic activity. These results suggested reusability of palladized bacterial cellulose which in turn is expected to substantially reduce the cost of treatment process. Thus RCCR seems to have high potential for treatment of ground water contaminated with chlorinated organic compounds. Dried palladized bacterial cellulose has been used as a material for electrodes in a fuel cell. However, its application as a hydrodechlorination catalyst in a reactor operating under room temperature and atmospheric pressure has not been reported to the best of our knowledge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analyses suggested the irreversible deposition of palladium (Pd 0) particles on the bacterial cellulose fibrils.  相似文献   

3.
The wet dechlorination treatment of poly(vinylidene chloride) (PVDC) was evaluated at atmospheric pressure in a solution of NaOH in ethylene glycol (EG), as a function of NaOH concentration, temperature, and solvent. Hydroxide ion from NaOH was required for dechlorination with EG acting solely as a solvent. The wet treatment exhibited significantly enhanced dechlorination efficiency over traditional thermal techniques, with a reaction efficiency as high as 92.8% in 1.0 M NaOH at 190 °C. Dechlorination reactions of PVDC in both NaOH/EG and NaOH/H2O were expressed by an apparent first-order reaction. At 190 °C, the apparent rate constant in 1.0 M NaOH/EG was approximately 1.4 times larger than in 1.0 M NaOH/H2O, with an apparent activation energy of 82.8 kJ mol−1, indicating that the reaction proceeded under chemical control. The degree of dechlorination increased with increasing reaction temperature, favouring the elimination of HCl over the hydroxyl substitution of chloride.  相似文献   

4.
Pd修饰Ti电极对水相中2,4,5-PCB还原脱氯的研究   总被引:4,自引:0,他引:4  
杨波  余刚  黄俊 《物理化学学报》2006,22(3):306-311
实验研究了Pd修饰Ti电极对甲醇/水相中十六烷基三甲基溴化铵(CTAB)增溶的2,4,5-PCB(PCB: 多氯联苯)的电化学还原脱氯作用. 采用两室流通式电解池, 考察了Pd负载量、电极结构、电场条件和溶液流速对2,4,5-PCB的去除效率的影响. 优化条件是: Pd负载量为3 mg•cm-2, 阴极为3层电极极板, 电极电位为-1.10 V(vs SCE); 溶液流速对脱氯效率的影响不明显. 在该条件下经过9 h电解, 2,4,5-PCB的去除率达96.2%, 脱氯产物未完全生成联苯, 其产率为89.6%, 电流效率介于11.3%~33.0%之间.  相似文献   

5.
A modified headspace liquid-phase microextraction (HS-LPME) method was studied for the extraction of chlorophenols (CPs) from aqueous samples with complicated matrices, before gas chromatographic (GC) analysis with electron capture detection (ECD). Microwave heating was applied to accelerate the evaporation of CPs into the headspace, and an external-cooling system was used to control the sampling temperature. Conditions influencing extraction efficiency, such as the LPME-solvent, the sampling position of LPME, the sampling temperature, microwave power, and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly optimized. Experimental results indicated that the extraction of CPs from a 10mL aquatic sample (pH 1.0) was achieved with the best efficiency through the use of 1-octanol as solvent, microwave irradiation of 167W, and sampling at 45 degrees C for 10min. The detections were linear in the concentration of 5.0-100microg/L for 2,4-dichlorophenol (2,4-DCP), and 0.5-10microg/L for 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Detection limits were found to be 0.7, 0.04, 0.07, and 0.08microg/L for 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP, and PCP, respectively. A landfill leachate sample was analyzed with recovery between 83 and 102%. The present method was proven to serve as a simple, sensitive, and rapid procedure for CP analysis in an aqueous sample.  相似文献   

6.
Nanoscale Fe0 was synthesized through a reductive method in this paper. The experiments were per-formed to investigate the reduction of 2,4-dichlorophenol (2,4-DCP) by nanoscale Fe0 under different conditions. The pathways for the reduction of 2,4-DCP by nanoscale Fe0 were discussed. Batch studies demonstrated that the mechanism includes adsorption, dechlorination and cleavage of the benzene ring. Dechlorination, which occurs after 2,4-DCP molecule is adsorbed on the interface of Fe particle, is an interfacial reaction. One or two chlorine atom can be removed from 2,4-DCP to form 2-chlorophenol, 4-chlorophenol or phenol. As the concentration of 2,4-DCP increased, the relative dechlorination ratio decreased. However, the reduced quantities of 2,4-DCP increased. Temperature can influence dechlo-rination rate and pathway. Dechlorination is prior to cleavage of the benzene ring at a higher tempera-ture, but at a lower temperature, adsorption may be the main pathway, and cleavage of the benzene ring may be prior to dechlorination.  相似文献   

7.
Nanoscale Fe0 was synthesized through a reductive method in this paper. The experiments were performed to investigate the reduction of 2,4-dichlorophenol (2,4-DCP) by nanoscale Fe0 under different conditions. The pathways for the reduction of 2,4-DCP by nanoscale Fe0 were discussed. Batch studies demonstrated that the mechanism includes adsorption, dechlorination and cleavage of the benzene ring. Dechlorination, which occurs after 2,4-DCP molecule is adsorbed on the interface of Fe particle, is an interfacial reaction. One or two chlorine atom can be removed from 2,4-DCP to form 2-chlorophenol, 4-chlorophenol or phenol. As the concentration of 2,4-DCP increased, the relative dechlorination ratio decreased. However, the reduced quantities of 2,4-DCP increased. Temperature can influence dechlorination rate and pathway. Dechlorination is prior to cleavage of the benzene ring at a higher temperature, but at a lower temperature, adsorption may be the main pathway, and cleavage of the benzene ring may be prior to dechlorination. Supported by the National Natural Science Foundation of China (Grant Nos. 50325824, 50678089) and the Excellent Young Teacher Program of MOE.  相似文献   

8.
Mg0/Pd4+ was able to dechlorinate >99% of extractable DDT (initial concentration of 10 mg DDT kg(-1) of soil) and >90% of extractable DDT (initial concentration of 50 mg DDT kg(-1) of soil) in soil slurry. Mg0/Pd4+ was also found to be effective in dechlorinating of 50 mg kg(-1) DDD and DDE, in soil aged for varying time periods. GC-MS analyses revealed the formation of 1,1-diphenylethane as an end product from DDT, DDE and DDD. To the best of our knowledge this is the first report describing the application Mg0/Pd4+ system for remediation of DDT, DDD and DDE contaminated soil. We conclude that reductive dechlorination reaction catalyzed by Mg0/Pd4+ may be a promising system to remediate soil contaminated with DDT and its dechlorinated products such as DDD and DDE.  相似文献   

9.
In the present study, peanut shell, a green waste raw material, was used to prepare biochar (BC) and to obtain BC-supported nano-palladium/iron (BC-nPd/Fe) composites for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. Characterization analysis demonstrated that nPd/Fe particles were well dispersed on the BC surface with weakened magnetic properties. The average particle diameter and specific surface area of nPd/Fe were 101.3 nm and 6.7 m2 g−1, whereas the corresponding values of the BC-nPd/Fe materials were 88.8 nm and 14.8 m2 g−1, respectively. Several factors were found to influence the dechlorination of 2,4-D, including the weight ratio of BC to Fe, Pd loading ratio, initial solution pH, 2,4-D concentration, and reaction temperature. Dechlorination results indicated that the 2,4-D removal and phenoxyacetic acid (PA) generation rates were 44.1% and 20.1%, respectively, in the nPd/Fe system, and 100.0% and 92.1%, respectively, in the BC-nPd/Fe system. The dechlorination of 2,4-D was well described by the pseudo-first-order kinetic model (R2 > 0.97), and the observed rate constants kobs were 0.0042 min (nPd/Fe) and 0.0578 min (BC-nPd/Fe), respectively. The reaction mechanism indicated that the dechlorination hydrogenation was the main process to remove 2,4-D from water in the BC-nPd/Fe system. In addition, BC inhibited the formation of a passivation layer on the particle surface during the reaction, thus maintaining the high reactivity of BC-nPd/Fe. The easy preparation technique, high 2,4-D dechlorination capacity, and mild reaction conditions suggest that BC-nPd/Fe may be a promising alternative composite to remove 2,4-D from water.  相似文献   

10.
Summary A sensitive, specific and analytically reliable method for the determination of mono-, di-, tri- and tetrachlorophenols in human urine has been elaborated. After acid hydrolysis and a simultaneous steam distillation of the urine samples, spiked with an internal standard, the chromatographically concentrated chlorophenols have been derivatized with pentafluorobenzoylchloride and analyzed by capillary gas chromatography/mass spectrometry. The detection limits for the chlorophenols ranged from 0.2 to 2.5 g/l. Using this method we were able to detect 4-MCP, 2,4-+2,5-DCP, 2,4,6-TCP, 2,4,5-TCP and 2,3,4,6-+2,3,5,6-TeCP in urine samples of a group of 258 men and women which had no known occupational contact to hazardous chemical substances. The 95 percentiles for the concentrations of these substances in the urine samples under investigation were 7.5 (4-MCP); 33.6(2,4-+2,5-DCP); 4,7 (2,4,6-TCP); 4,5 (2,4,5-TCP) and 22.2 (2,3,4,6-+2,3,5,6-TeCP) g per liter. That means, that these chlorophenols are constituents of urine of the normal population in concentrations which in part are greater than that of pentachlorophenol (PCP).  相似文献   

11.
During the course of a human biomonitoring project (Biebesheim in Hessen, Germany) we elaborated a simple but sensitive method for the determination of tri- (TCP), tetra- (TeCP) and pentachlorophenol (PCP) in human urine. Urine samples, spiked with internal standards, were treated by acid hydrolysis. After a steam bath distillation the distillates were extracted using solid phase extraction. Derivatization of the chlorophenols was not carried out. GC/ECD system was used for detection. Detection limits of the chlorophenols were found in the range of 0.02 μg/L urine (detection limits of the ECD: 0.52 to 2.76 μg/L). By this method mono- and dichlorophenols cannot be detected. We investigated 24h-urine samples of 339 pupils (age 10 to 12 years). The children live either in the surroundings of a hazardous waste incinerator (SVA) in Biebesheim (n = 193), or controls (i.e. regions without waste incinerator) in the non polluted areas of Odenwald (n = 90) and Rheintal (n = 56). Between these three groups we did not find statistically significant differences in chlorophenol concentrations of the urine samples. The 95-percentiles of the analyzed samples are 0.74 μg/L (2,3,4-TCP), 1.24 μg/L (2,3,5-TCP), 0.70 μg/L (2,3,6–TCP), 1.10 μg/L (2,4,5–TCP), 1.74 μg/L (2,4,6–TCP), 2.84 μg/L (3,4,5–TCP), 4.78 μg/L (2,3,4,5-TeCP), 1.86 μg/L (2,3,4,6-TeCP), 2.90 μg/L (2,3,5,6-TeCP) and 4.39 μg/L (PCP). Received: 24 February 1999 / Revised: 3 May 1999 / Accepted: 6 May 1999  相似文献   

12.
During the course of a human biomonitoring project (Biebesheim in Hessen, Germany) we elaborated a simple but sensitive method for the determination of tri- (TCP), tetra- (TeCP) and pentachlorophenol (PCP) in human urine. Urine samples, spiked with internal standards, were treated by acid hydrolysis. After a steam bath distillation the distillates were extracted using solid phase extraction. Derivatization of the chlorophenols was not carried out. GC/ECD system was used for detection. Detection limits of the chlorophenols were found in the range of 0.02 μg/L urine (detection limits of the ECD: 0.52 to 2.76 μg/L). By this method mono- and dichlorophenols cannot be detected. We investigated 24h-urine samples of 339 pupils (age 10 to 12 years). The children live either in the surroundings of a hazardous waste incinerator (SVA) in Biebesheim (n = 193), or controls (i.e. regions without waste incinerator) in the non polluted areas of Odenwald (n = 90) and Rheintal (n = 56). Between these three groups we did not find statistically significant differences in chlorophenol concentrations of the urine samples. The 95-percentiles of the analyzed samples are 0.74 μg/L (2,3,4-TCP), 1.24 μg/L (2,3,5-TCP), 0.70 μg/L (2,3,6–TCP), 1.10 μg/L (2,4,5–TCP), 1.74 μg/L (2,4,6–TCP), 2.84 μg/L (3,4,5–TCP), 4.78 μg/L (2,3,4,5-TeCP), 1.86 μg/L (2,3,4,6-TeCP), 2.90 μg/L (2,3,5,6-TeCP) and 4.39 μg/L (PCP). Received: 24 February 1999 / Revised: 3 May 1999 / Accepted: 6 May 1999  相似文献   

13.
崔君  顾华  张强 《分析试验室》2021,40(1):54-58
建立了气相色谱-质谱法测定水中6种酚类化合物(2,6-二氯酚、2,4-二氯酚、2,4,6-三氯酚、2,4,5-三氯酚、2,3,4,6-四氯酚和五氯酚)的方法.样品经二氯甲烷-乙酸乙酯混合溶剂萃取后,用旋转蒸发浓缩至1 mL,加入五氟苄基溴进行改进版衍生化反应,产物用DB-5 mS毛细管柱分离,采用选择离子监测模式测定....  相似文献   

14.
Chlorophenoxycarboxylic acid herbicides were separated and determined by capillary electrophoresis. An analysis of a six-component mixture containing 2,4-dichlorophenoxybutyric (2,4-DB), 2,4-dichlorophenoxypropionic (2,4-DP), 2,4,5-trichlorophenoxyacetic (2,4,5-T), 2,4-dichlorophenoxyacetic (2,4-D), and phenoxyacetic (PA) acids and 2,4-dichlorophenol (2,4-DCP), the product of their degradation in aqueous media, took no longer than 15 min. Solid-phase extraction on Diapak C-16 cartridges was used for sample preparation. The detection limits for herbicides in water samples with account for preconcentration (K = 250) were found to be 0.0005 mg/L for 2,4-DB, 2,4-DP, 2,4,5-T, and 2,4-D and 0.001 mg/L for PA. It was shown that humic acids (< 50 mg/L) do not interfere with the determination of chlorophenoxycarboxylic acids.  相似文献   

15.
李海玉  张庆  康苏媛  吕庆  白桦  王超 《色谱》2012,30(6):596-601
建立了固相萃取-气相色谱-质谱(SPE-GC-MS)检测含氯酚类化合物(2,4-二氯苯酚、2,4,6-三氯苯酚、2,4,5-三氯苯酚、2,3,4,6-四氯苯酚、五氯苯酚、林丹)和菊酯类化合物(氯菊酯、氟氯氰菊酯、氯氰菊酯、溴氰菊酯)等10种木材防腐剂的方法。对家具样品采用超声萃取法、以甲醇为提取剂在室温下反复提取2次,提取液经浓缩后,加入碳酸钾和乙酰酐衍生化,将衍生化后的溶液通过Oasis HLB固相萃取柱净化,用乙酸乙酯洗脱并收集检测。采用该方法实现了家具中10种木材防腐剂的分离检测,该方法中氯酚类防腐剂定量限为1 mg/kg、菊酯类防腐剂定量限为5 mg/kg,平均回收率为76.0%~108.8%。应用该方法对市场上销售的木制家具进行了检测,在部分家具中检出含有少量林丹。实验结果证明,该方法准确、灵敏,可有效地应用于木制家具中防腐剂的实际检验工作中。  相似文献   

16.
The reaction of polyepichlorohydrin with magnesium in tetrahydrofuran at reflux temperature was studied in the hope of obtaining a polymeric Grignard reagent. The polymeric Grignard reagent could not be obtained, but dechlorination occurred. It was confirmed that the Grignard reagent of polyepichlorohydrin was formed as an intermediate during the dechlorination. The reactions of polyepichlorohydrin with Grignard reagents were carried out in tetrahydrofuran at reflux temperature. Benzylmagnesium chloride and allylmagnesium chloride were used as Grignard reagents. It was found that the chlorine atom in polyepichlorohydrin can be replaced by benzyl and allyl groups. The extent of the substitution increased with increasing concentration of Grignard reagent. Dechlorination and scission of the ether linkage occurred simultaneously as side reactions.  相似文献   

17.
Introduction of functional groups into humic substances is a novel trend in humic technology. In the present study, a biomimetic catalyst, 5-(p-hydroxyphenyl)-5,10,15,20-tetrasulfonatophenyl porphine iron(III) (FeTPPSOH), was introduced into humic acid via formaldehyde polycondensation. In the presence of KHSO5, the self-degradation of the prepared catalysts, which were called “resol,” was retarded. In addition, the catalytic activity, which was evaluated by the percent pentachlorophenol (PCP) disappearance and levels of dechlorination, was significantly greater for the resol catalysts. The results of the present study show that resol catalysts effectively enhance oxidative degradation of PCP. The byproducts of oxidation were investigated by GC/MS analysis of n-hexane extracts of the reaction mixtures. This analysis demonstrated that another advantage of resol catalysts is that they prevent the formation of more harmful dimers, such as octachlorodibenzo-p-dioxin.  相似文献   

18.
The stabilities of the Ca(2+) and Mg(2+) complexes with 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid) were studied potentiometrically, at 25 degrees . The species ML, MHL, MH(2)L, and M(2)L [L = pyromellitate(4-); M = Ca(2+), Mg(2+)] were found to be present in solution (for Mg(2+) the species MH(3)L was also found). The dependence of the formation constants on ionic strength, and the stability trends of the Ca(2+) and Mg(2+) complexes with carboxylate ligands, are discussed.  相似文献   

19.
Ni/Fe bimetallic nanoparticles were synthesized for treatment of Aroclor 1242, in order to evaluate their applicability for in situ remediation of groundwater and soil contaminated by polychlorinated biphenyls (PCBs). Our experimental results indicate that the total PCB concentration changed during the reduction of 3,5-dichlorobiphenyl (PCB 14), and biphenyl was produced as the final product. Initially, the concentration of 3-chlorobiphenyl (PCB 2) was increased in the prophase reaction and then slowly decreased, suggesting that Aroclor 1242 was first adsorbed by Ni/Fe nanoparticles, and then, the higher chlorinated congeners were converted gradually to the lower chlorinated congeners, and finally to biphenyl. The dechlorination efficiency of Aroclor 1242 reached approximately 80% at 25°C in just 5h, then 95.6% and 95.8% in 10h and 24h, respectively. The study revealed that high Ni/Fe nanoparticle dosage and high Ni content in Ni/Fe nanoparticles favor the catalytic dechlorination reaction. Moreover, a comparison of different types of catalysts on the dechlorination of Aroclor 1242 indicated that Ni/Mg and Mg powders showed a greater reactivity than Ni/Fe and Fe nanoparticles, respectively.  相似文献   

20.
在乙醇/水体系中采用KBH4液相还原法, 以石墨微粉为载体, Cu为复合金属, 通过两步法合成了具有球状团簇结构的负载型纳米Cu/Fe二元合金. 与单纯负载型纳米Fe0相比, 该复合材料对三氯乙烯(TCE)具有更高的还原脱氯性能, 纳米Fe0的质量浓度为10 g/L时, 5 h内能将10 mg/L的TCE完全去除. 将十六烷基三甲基溴化铵(CTAB)用于负载型纳米二元合金的表面改性, 改性后的材料对TCE的还原脱氯性能提高. 改性材料连续降解TCE 36 d, 10.2 mg/L TCE在7 h内即完全去除, 材料改性后不易氧化失活, 还原性能保持长期稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号