首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial production of beta-lactamases, which hydrolyze beta-lactam type antibiotics, is a common antibiotic resistance mechanism. Antibiotic resistance is a high priority intervention area and one strategy to overcome resistance is to administer antibiotics with beta-lactamase inhibitors in the treatment of infectious diseases. Unfortunately, beta-lactamases are evolving at a rapid pace with new inhibitor resistant mutants emerging every day, driving the design and development of novel beta-lactamase inhibitors. Here, we examined the inhibitor recognition mechanism of two common beta-lactamases using molecular dynamics simulations. Binding of beta-lactamase inhibitor protein (BLIP) caused changes in the flexibility of regions away from the binding site. One of these regions was the H10 helix, which was previously identified to form a lid over an allosteric inhibitor binding site. Closer examination of the H10 helix using sequence and structure comparisons with other beta-lactamases revealed the presence of a highly conserved Trp229 residue, which forms a stacking interaction with two conserved proline residues. Molecular dynamics simulations on the Trp229Ala mutants of TEM-1 and SHV-1 resulted in decreased stability in the apo form, possibly due to loss of the stacking interaction as a result of the mutation. The mutant TEM-1 beta-lactamase had higher H10 fluctuations in the presence of BLIP, higher affinity to BLIP and higher cross-correlations with BLIP. Our results suggest that the H10 helix and specifically W229 are important modulators of the allosteric communication between the active site and the allosteric site.  相似文献   

2.
The method of hybridization analysis on microarrays with enzymatic detection based on horseradish peroxidase is applied to screen infectious agents of nosocomial and community-acquired infections for beta-lactamase genes causing resistance to beta-lactam antibiotics. The advantages of using this method for the rapid identification of genes are demonstrated. Similarities and differences in the distribution of beta-lactamase genes identified in the infectious agents of nosocomial and community-acquired infections are revealed. The most common type of extended-spectrum beta-lactamases (ESBLs) is CTX-M. The high prevalence of extended-spectrum beta-lactamases, particularly of the TEM-1 beta-lactamase, is demonstrated. Individually or in combination with genes of TEM-1 and SVH-1 beta-lactamases, the genes of subgroup CTX-M-1 beta-lactamases were the most frequently identified in community-acquired infectious agents. There were no cases of the simultaneous detection of multiple ESBLs in community-acquired infectious agents. Much more varied combinations of beta-lactamases were identified in nosocomial infectious agents: a combination of extended-spectrum beta-lactamases and broad-spectrum beta-lactamases was identified in 62% of strains and the simultaneous presence of two different types of ESBLs was identified in 18% of strains.  相似文献   

3.
Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and beta-lactamases, resistance enzymes to beta-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for beta-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7beta-[N-Acetyl-L-alanyl-gamma-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporin bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC beta-lactamase from Escherichia coli was solved at 1.71 A resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the -lactamase active site. Furthermore, insertion of a peptide in the beta-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the beta-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.  相似文献   

4.
The complex formation of TEM-1 β-lactamase and its three mutant forms TEM-32, TEM-37, and TEM-39 with substrates cephalothin and CENTA and serine beta-lactamase inhibitors sulbactam, tazobactam, and clavulanic acid is studied using the methods of molecular dynamics. It is found that the stability of the complexes is caused by the electrostatic attraction between the deprotonated carboxyl group of the β-lactam ring of the substrate (inhibitor) and the positively charged amino groups of the lysine 234 and 73 residues, located in the active site of the enzymes. The formation of a hydrogen bond between this substrate group or its carbonyl oxygen with the hydroxyl group of the catalytic serine 70 residue and also between the negatively charged substituent groups and the positive charge region formed by the arginine 244 guanidine group and the asparagine 276 amino group is observed for some complexes. The binding energy of CENTA with TEM-1 β-lactamase is below the analogous binding energy of cephalothin, which is confirmed by the values of the Michaelis constants, determined experimentally. It is also found that the inhibitors bind to the mutant forms of β-lactamases related to the inhibitor-resistant phenotype, with higher affinity than TEM-1 β-lactamase.  相似文献   

5.
Although TEM-1 beta-lactamase is among the best studied enzymes, its acylation mechanism remains controversial. To investigate this problem, the structure of TEM-1 in complex with an acylation transition-state analogue was determined at ultrahigh resolution (0.85 A) by X-ray crystallography. The quality of the data was such as to allow for refinement to an R-factor of 9.1% and an R(free) of 11.2%. In the resulting structure, the electron density features were clear enough to differentiate between single and double bonds in carboxylate groups, to identify multiple conformations that are occupied by residues and loops, and to assign 70% of the protons in the protein. Unexpectedly, even at pH 8.0 where the protein was crystallized, the active site residue Glu166 is clearly protonated. This supports the hypothesis that Glu166 is the general base in the acylation half of the reaction cycle. This structure suggests that Glu166 acts through the catalytic water to activate Ser70 for nucleophilic attack on the beta-lactam ring of the substrate. The hydrolytic mechanism of class A beta-lactamases, such as TEM-1, appears to be symmetrical, as are the serine proteases. Apart from its mechanistic implications, this atomic resolution structure affords an unusually detailed view of the structure, dynamics, and hydrogen-bonding networks of TEM-1, which may be useful for the design of inhibitors against this key antibiotic resistance target.  相似文献   

6.
BACKGROUND: Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. RESULTS: To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. CONCLUSIONS: Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.  相似文献   

7.
beta-Lactamases are one of the major causes of antibiotic resistance in Gram negative bacteria. The continuing evolution of beta-lactamases that are capable of hydrolyzing our most potent beta-lactams presents a vexing clinical problem, in particular since a number of them are resistant to inhibitors. The efficient inhibition of these enzymes is therefore of great clinical importance. Building upon our previous structural studies that examined tazobactam trapped as a trans-enamine intermediate in a deacylation deficient SHV variant, we designed a novel penam sulfone derivative that forms a more stable trans-enamine intermediate. We report here the 1.28 A resolution crystal structure of wt SHV-1 in complex with a rationally designed penam sulfone, SA2-13. The compound is covalently bound to the active site of wt SHV-1 similar to tazobactam yet forms an additional salt-bridge with K234 and hydrogen bonds with S130 and T235 to stabilize the trans-enamine intermediate. Kinetic measurements show that SA2-13, once reacted with SHV-1 beta-lactamase, is about 10-fold slower at being released from the enzyme compared to tazobactam. Stabilizing the trans-enamine intermediate represents a novel strategy for the rational design of mechanism-based class A beta-lactamase inhibitors.  相似文献   

8.
Beta-lactamases are resistance enzymes for beta-lactam antibiotics. These enzymes hydrolyze the beta-lactam moieties of these antibiotics, rendering them inactive. Of the four classes of known beta-lactamases, the enzymes of class D are the least understood. We report herein the high-resolution (1.9 A) crystal structure of the class D OXA-10 beta-lactamase inhibited by a penicillanate derivative. The structure provides evidence that the carboxylated Lys-70 (a carbamate) is intimately involved in the mechanism of the enzyme.  相似文献   

9.
Beta-lactamase acquisition is the most prevalent basis for Gram-negative bacteria resistance to the beta-lactam antibiotics. The mechanism used by the most common class A Gram-negative beta-lactamases is serine acylation followed by hydrolytic deacylation, destroying the beta-lactam. The ab initio quantum mechanical/molecular mechanical (QM/MM) calculations, augmented by extensive molecular dynamics simulations reported herein, describe the serine acylation mechanism for the class A TEM-1 beta-lactamase with penicillanic acid as substrate. Potential energy surfaces (based on approximately 350 MP2/6-31+G calculations) reveal the proton movements that govern Ser70 tetrahedral formation and then collapse to the acyl-enzyme. A remarkable duality of mechanism for tetrahedral formation is implicated. Following substrate binding, the pathway initiates by a low energy barrier (5 kcal mol(-1)) and an energetically favorable transfer of a proton from Lys73 to Glu166, through the catalytic water molecule and Ser70. This gives unprotonated Lys73 and protonated Glu166. Tetrahedral formation ensues in a concerted general base process, with Lys73 promoting Ser70 addition to the beta-lactam carbonyl. Moreover, the three-dimensional potential energy surface also shows that the previously proposed pathway, involving Glu166 as the general base promoting Ser70 through a conserved water molecule, exists in competition with the Lys73 process. The existence of two routes to the tetrahedral species is fully consistent with experimental data for mutant variants of the TEM beta-lactamase.  相似文献   

10.
Hybrid quantum-classical molecular dynamics simulations of a mutant Escherichia coli dihydrofolate reductase enzyme are presented. Although residue 121 is on the exterior of the enzyme, experimental studies have shown that the mutation of Gly-121 to valine reduces the rate of hydride transfer by a factor of 163. The simulations indicate that the decrease in the hydride transfer rate for the G121V mutant is due to an increase in the free energy barrier. The calculated free energy barrier is higher for the mutant than for the wild-type enzyme by an amount that is consistent with the experimentally observed rate reduction. The calculated transmission coefficients are comparable for the wild-type and mutant enzymes. The simulations suggest that this mutation may interrupt a network of coupled promoting motions proposed to play an important role in DHFR catalysis. This phenomenon has broad implications for protein engineering and drug design.  相似文献   

11.
The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS(1) spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 microL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes.  相似文献   

12.
Transthyretin (TTR) is one of the known 20 or so human proteins that form fibrils in vivo, which is a hallmark of amyloid diseases. Recently, molecular dynamics simulations using ENCAD force field have revealed that under low pH conditions, the peptide planes of several amyloidogenic proteins can flip in one direction to form an alpha-pleated structure which may be a common conformational transition in the fibril formation. We performed molecular dynamics simulations with AMBER force fields on a recently engineered double mutant TTR, which was shown experimentally to form amyloid fibrils even under close to physiological conditions. Our simulations have demonstrated that peptide-plane flipping can occur even under neutral pH and room temperature for this amyloidogenic TTR variant. Unlike previously reported peptide-plane flipping of TTR using ENCAD force field, we have found two-way flipping using AMBER force field. We propose a new mechanism of amyloid formation based on the two-way flipping, which gives a better explanation of various experimental and computational results. In principle, the residual dipolar and hydrogen-bond scalar coupling techniques can be applied to the wild-type TTR and the variant to study the peptide-plane flipping of amyloidogenic proteins.  相似文献   

13.
14.
BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, is an active-site-directed inactivator of bacterial beta-lactamases. The crystal structure of Enterobacter cloacae 908R class C beta-lactamase in complex with BRL 42715, docking, and energy minimization studies explain stereoselectivity of the binding of C6-(heterocyclic methylene)penems against class C beta-lactamase.  相似文献   

15.
Secondary alcohols having bulky substituents on both sides of the hydroxy group are inherently poor substrates for most lipases. In view of this weakness, we redesigned a Burkholderia cepacia lipase to create a variant with improved enzymatic characteristics. The I287F/I290A double mutant showed a high conversion and a high E value (>200) for a poor substrate for which the wild-type enzyme showed a low conversion and a low E value (5). This enhancement of catalytic activity and enantioselectivity of the variant resulted from the cooperative action of two mutations: Phe287 contributed to both enhancement of the (R)-enantiomer reactivity and suppression of the (S)-enantiomer reactivity, while Ala290 created a space to facilitate the acylation of the (R)-enantiomer. The kinetic constants indicated that the mutations effectively altered the transition state. Substrate mapping analysis strongly suggested that the CH/π interaction partly enhanced the (R)-enantiomer reactivity, the estimated energy of the CH/π interaction being -0.4 kcal mol(-1). The substrate scope of the I287F/I290A double mutant was broad. This biocatalyst was useful for the dynamic kinetic resolution of a variety of bulky secondary alcohols for which the wild-type enzyme shows little or no activity.  相似文献   

16.
A rational design strategy was used to construct a sensitive "turn-on" biosensor for beta-lactam antibiotics and beta-lactamase inhibitors from a class A beta-lactamase mutant with suppressed hydrolytic activity. A fluorescein molecule was attached to the 166 position on the Omega-loop of the E166C mutant close to the active site of the beta-lactamase. Upon binding with antibiotics or inhibitors, the flexibility of the Omega-loop allows the fluorescein molecule to move out from the active site and be more exposed to solvent. This process is accompanied by an increase in the fluorescence of the labeled enzyme. The fluorescence intensity of the biosensor increases with the concentration of antibiotics or inhibitors, which can detect penicillin G at concentrations as low as 50 nM in water. This approach opens a possibility for converting highly active and nonallosteric enzymes into substrate-binding proteins for biosensing purposes.  相似文献   

17.
Enzyme functions such as catalysis, binding and regulation are directly related to a variety of conformational changes. A sensitive and useful method for their investigation is circular dichroism (CD) and a rotational strength (R) is its fundamental characteristic. In this study, we show how the sensitivity of the mechanisms of rotational strengths to important conformational changes depends on the chromophore environment in two beta-lactamases from class A (from Escherichia coli and B. licheniformis). Rotational strengths have been calculated using the matrix method and including the effects of local environment (LE). X-ray structures (of protein components) of several enzyme-ligand complexes from the catalytic cycle of the TEM-1 enzyme and for both crystallographic monomers of the enzyme from B. licheniformis were used. An analysis of the relative degree of perturbation of the rotational strengths upon local interactions is performed.  相似文献   

18.
The bacterial phosphotriesterase has been utilized as a template for the evolution of improved enzymes for the catalytic decomposition of organophosphate nerve agents. A combinatorial library of active site mutants was constructed by randomizing residues His-254, His-257, and Leu-303. The collection of mutant proteins was screened for the ability to hydrolyze a chromogenic analogue of the most toxic stereoisomer of the chemical warfare agent, soman. The mutant H254G/H257W/L303T catalyzed the hydrolysis of the target substrate nearly 3 orders of magnitude faster than the wild-type enzyme. The X-ray crystal structure was solved in the presence and absence of diisopropyl methyl phosphonate. The mutant enzyme was ligated to an additional divalent cation at the active site that was displaced upon the binding of the substrate analogue inhibitor. These studies demonstrate that substantial changes in substrate specificity can be achieved by relatively minor changes to the primary amino acid sequence.  相似文献   

19.
20.
beta-lactamases confer resistance to beta-lactam antibiotics such as penicillins and cephalosporins. However, beta-lactams that form an acyl-intermediate with the enzyme but subsequently are hindered from forming a catalytically competent conformation seem to be inhibitors of beta-lactamases. This inhibition may be imparted by specific groups on the ubiquitous R(1) side chain of beta-lactams, such as the 2-amino-4-thiazolyl methoxyimino (ATMO) group common among third-generation cephalosporins. Using steric hindrance of deacylation as a design guide, penicillin and carbacephem substrates were converted into effective beta-lactamase inhibitors and antiresistance antibiotics. To investigate the structural bases of inhibition, the crystal structures of the acyl-adducts of the penicillin substrate amoxicillin and the new analogous inhibitor ATMO-penicillin were determined. ATMO-penicillin binds in a catalytically incompetent conformation resembling that adopted by third-generation cephalosporins, demonstrating the transferability of such sterically hindered groups in inhibitor design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号