首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The interfacing of functional proteins with solid supports and the study of related protein‐adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br‐terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm?1 in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple‐membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br‐terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current–voltage (IV) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein‐containing device structures.  相似文献   

2.
Advanced multidimensional time-correlated single photon counting (mdTCSPC) and picosecond time-resolved fluorescence in combination with site-directed fluorescence labeling are valuable tools to study the properties of membrane protein surface segments on the pico- to nanoseconds time scale. Time-resolved fluorescence anisotropy changes of protein bound fluorescent probes reveal changes in protein dynamics and steric restriction. In addition, the change in fluorescence lifetime and intensity of the covalently bound fluorescent dye is indicative of environmental changes at the protein surface. In this study, we have measured the changes in fluorescence lifetime traces of the fluorescent dye fluorescein covalently bound to the first cytoplasmic loop of bacteriorhodopsin (bR) after light activation of protein function. The fluorescence is excited by a picosecond laser pulse. The retinylidene chromophore of bR is light-activated by a 10 ns laser pulse, which in turn triggers recording of a sequence of fluorescence lifetime traces in the mdTCSPC-module. The fluorescence decay changes upon protein function occur predominantly in the 100 ps time range. The kinetics of these changes shows two transitions between three intermediate states in the second part of the bR photocycle. Correlation with photocycle kinetics allows for the determination of reaction intermediates at the proteins surface which are coupled to changes in the retinal binding pocket.  相似文献   

3.
The nonlinear optical activity of bacteriorhodopsin (bR) Langmuir-Blodgett (LB) films were investigated computationally and experimentally. The second harmonic generation optical rotary dispersion (SHG-ORD) response was calculated directly from the known structure and orientation of the PSB retinal chromophore within bR with no adjustable parameters. The predicted results agree remarkably well in sign, magnitude, and trend with the experimental SHG-ORD measurements. The calculations indicated negligible chirality with the tensor for the PSB retinal chromophore, but significant chiral-specific activity for the thin film through a relatively simple orientational mechanism.  相似文献   

4.
Combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics simulations of bacteriorhodopsin (bR) in the membrane matrix have been carried out to determine the factors that make significant contributions to the opsin shift. We found that both solvation and interactions with the protein significantly shifts the absorption maximum of the retinal protonated Schiff base, but the effects are much more pronounced in polar solvents such as methanol, acetonitrile, and water than in the protein environment. The differential solvatochromic shifts of PSB in methanol and in bR leads to a bathochromic shift of about 1800 cm(-1). Because the combined QM/MM configuration interaction calculation is essentially a point charge model, this contribution is attributed to the extended point-charge model of Honig and Nakanishi. The incorporation of retinal in bR is accompanied by a change in retinal conformation from the 6-s-cis form in solution to the 6-s-trans configuration in bR. The extension of the pi-conjugated system further increases the red-shift by 2400 cm(-1). The remaining factors are due to the change in dispersion interactions. Using an estimate of about 1000 cm(-1) in the dispersion contribution by Houjou et al., we obtained a theoretical opsin shift of 5200 cm(-1) in bR, which is in excellent agreement with the experimental value of 5100 cm(-1). Structural analysis of the PSB binding site revealed the specific interactions that make contributions to the observed opsin shift. The combined QM/MM method used in the present study provides an opportunity to accurately model the photoisomerization and proton transfer reactions in bR.  相似文献   

5.
The protonation state of key aspartic acid residues in the O intermediate of bacteriorhodopsin (bR) has been investigated by time-resolved Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis. In an earlier study (Bousché et al., J. Biol Chem. 266, 11063-11067, 1991) we found that Asp-96 undergoes a deprotonation during the M-->N transition, confirming its role as a proton donor in the reprotonation pathway leading from the cytoplasm to the Schiff base. In addition, both Asp-85 and Asp-212, which protonate upon formation of the M intermediate, remain protonated in the N intermediate. In this study, we have utilized the mutant Tyr-185-->Phe (Y185F), which at high pH and salt concentrations exhibits a photocycle similar to wild type bR but has a much slower decay of the O intermediate. Y185F was expressed in native Halobacterium halobium and isolated as intact purple membrane fragments. Time-resolved FTIR difference spectra and visible difference spectra of this mutant were measured from hydrated multilayer films. A normal N intermediate in the photocycle of Y185F was identified on the basis of characteristic chromophore and protein vibrational bands. As N decays, bands characteristic of the all-trans O chromophore appear in the time-resolved FTIR difference spectra in the same time range as the appearance of a red-shifted photocycle intermediate absorbing near 640 nm. Based on our previous assignment of the carboxyl stretch bands to the four membrane embedded Asp groups: Asp-85, Asp-96, Asp-115 and Asp-212, we conclude that during O formation: (i) Asp-96 undergoes reprotonation. (ii) Asp-85 may undergo a small change in environment but remains protonated. (iii) Asp-212 remains partially protonated. In addition, reisomerization of the chromophore during the N-->O transition is accompanied by a major reversal of protein conformational changes which occurred during the earlier steps in the photocycle. These results are discussed in terms of a proposed mechanism for proton transport.  相似文献   

6.
The photochemistry of the 13-desmethyl (DM) analogue of bacteriorhodopsin (BR) is examined by using spectroscopy, molecular orbital theory, and chromophore extraction followed by conformational analysis. The removal of the 13-methyl group permits the direct photochemical formation of a thermally stable, photochemically reversible state, P1(DM) (lambda(max) = 525 nm), which can be generated efficiently by exciting the resting state, bR(DM) with yellow or red light (lambda > 590 nm). Chromophore extraction analysis reveals that the retinal configuration in P1(DM) is 9-cis, identical to that of the retinal configuration in the native BR P1 state. Fourier transform infrared and Raman experiments on P1(DM) indicate an anti configuration around the C15=N bond, as would be expected of an O-state photoproduct. However, low-temperature spectroscopy and ambient, time-resolved studies indicate that the P1(DM) state forms primarily via thermal relaxation from the L(D)(DM) state. Theoretical studies on the BR binding site show that 13-dm retinal is capable of isomerizing into a 9-cis configuration with minimal steric hindrance from surrounding residues, in contrast to the native chromophore in which surrounding residues significantly obstruct the corresponding motion. Analysis of the photokinetic experiments indicates that the Arrhenius activation energy of the bR(DM) --> P1(DM) transition in 13-dm-BR is less than 0.6 kcal/mol (vs 22 +/-5 kcal/mol measured for the bR --> P (P1 and P2) reaction in 85:15 glycerol:water suspensions of wild type). Consequently, the P1(DM) state in 13-dm-BR can form directly from all-trans, 15-anti intermediates (bR(DM) and O(DM)) or all-trans, 15-syn (K(D)(DM)/L(D)(DM)) intermediates. This study demonstrates that the 13-methyl group, and its interactions with nearby binding site residues, is primarily responsible for channeling one-photon photochemical and thermal reactions and is limited to the all-trans and 13-cis species interconversions in the native protein.  相似文献   

7.
Abstract To investigate the shape of the chromophore binding site of pharaonis phoborhodopsin (ppR), ppR-opsin was incubated with five ring-modified retinal analogs: an acyclic retinal, phenylretinal, α-retinal, cyclohexylretinal and 5-isopropyl-α-retinal. The experimental results were compared with those obtained from bacteriorhodopsin-opsin (bR-opsin) and the same retinal analogs. It was suggested that ring chain conformation is important in affecting the spectral shoulder unique for the absorption spectrum of ppR. The rate of pigment formation depended greatly on the analogs used with the planar analogs showing rapid formation. Thus, we concluded that the space of the retinal binding site of ppR is restricted to the plane of the cyclohexenyl ring of the chromophore, whereas that of bR is less restricted.  相似文献   

8.
Several spectroscopic techniques (absorption, emission, transient absorption and differential scanning calorimetry--DSC) were used to investigate the deprotonation of dibucaine.HCl in a hydrophobic environment, and the interaction sites and mechanisms of the local anesthetic dibucaine.HCl on bacteriorhodopsin (bR) in purple membrane. The important results are summarized as follows: (1) the visible absorption features of native (lambda max = 568 nm) and deionized (lambda max = 608 nm) bR are sensitive to the amount of dibucaine.HCl added; (2) the emission spectrum of dibucaine.HCl embedded in the retinal-free mutant bR is similar to that of dibucaine free base in Triton X-100 micellar solutions; (3) the phosphorescence emission of dibucaine at 77 K is completely quenched by bR and the fluorescence quenching rate for the incorporated dibucaine.HCl in bR was determined as kq = 4.09 x 10(13) M-1 s-1; (4) the incorporation of dibucaine.HCl in bR inhibits the slow component rate of formation of M412 and decreases the amount of M412 formation in the photochemical cycle of bR; and (5) the thermal stability of native bR was measured by DSC in the presence and absence of dibucaine and yielded an endothermic transition at 95.9 +/- 1.0 degrees C with 13.6 J/g (3.25 +/- 0.12 cal/g) of enthalpy changes. All observations suggest that the action site of the local anesthetic, dibucaine.HCl, is near or at the chromophore, i.e. the retinal Schiff base of bR. The anesthetic action on bR purple membrane is probably via a specific site binding, but not a conformational mechanism.  相似文献   

9.
Vibrational modes of the hydrogen-bond network in the binding site of bacteriorhodopsin (bR), a protein in halobacteria functioning as a light-driven proton pump, were investigated by an ab initio quantum mechanical/molecular mechanical (QM/MM) method. Normal-mode analysis calculations for O-D and N-D stretching modes of internal water molecules and the Schiff base of the retinal chromophore in the early intermediate state, K, reproduced well experimentally observed vibrational spectra. Supported by agreement with observed spectra, the QM/MM calculation suggests that weakened hydrogen bonds upon photoisomerization of the chromophore are an important means of energy storage in bR.  相似文献   

10.
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor for the photophobic response of Natronomonas pharaonis. Tryptophan 182 (W182) of bacteriorhodopsin (bR) is near the chromophore retinal and has been suggested to interact with retinal during the photoreaction and also to be involved in the hydrogen-bonding network around the retinal. W182 of bR is conserved in ppR as tryptophan 171 (W171). To elucidate whether W171 of ppR interacts with retinal during the photoreaction and/or is involved in the hydrogen-bonding network as in bR, we formed W171-substituted mutants of ppR, W171A and W171T. Our low-temperature spectroscopic study has revealed that the substitution of W171 to Ala or Thr resulted in the stabilization of M- and O-intermediates. The stability of M and absorption spectral changes during the M-decay were different depending on the substituted residue. These findings suggest that W171 in ppR interacts with retinal and the degree of the interaction depends on the substituted residues, which might be rate determining in the M-decay. In addition, the involvement of W171 in the hydrogen-bonding network is suggested by the O-decay. We also found that glycerol slowed the decay of M and not of O.  相似文献   

11.
Abstract— The composition of retinal isomers in bacteriorhodopsin (bR) in purple membrane (PM) was determined by photoelectric response measurements using a sandwich-type electrochemical cell. The measured amplitude of the photocurrent obtained from a dark-adapted sample was 55% lower than that from a light-adapted sample. This ratio, 55:45, would correspond to the 13- cis /aU- trans isomer ratio of retinal in the dark if the 13- cis form of the pigment did not give a response. This amplitude change correlated with the visible spectral shift of bR. The isomer ratio in the dark depended only weakly on the temperature of the electrolyte, whereas the retinal isomerization rate strongly depended on the temperature and the pH of the electrolyte in the cell. Our results indicate that photoelectric response is elicited only by a species originating from bR containing all- trans retinal and that the behavior of the response in the dark is associated with the pKa of the proton release kinetics of Asp-85.  相似文献   

12.
Light absorption by the visual pigment rhodopsin leads to vision via a complex signal transduction pathway that is initiated by the ultrafast and highly efficient photoreaction of its chromophore, the retinal protonated Schiff base (RPSB). Here, we investigate this reaction in real time by means of unrestrained molecular dynamics simulations of the protein in a membrane mimetic environment, treating the chromophore at the density functional theory level. We demonstrate that a highly strained all-trans RPSB is formed starting from the 11-cis configuration (dark state) within approximately 100 fs by a minor rearrangement of the nuclei under preservation of the saltbridge with Glu113 and virtually no deformation of the binding pocket. Hence, the initial step of vision can be understood as the compression of a molecular spring by a minor change of the nuclear coordinates. This spring can then release its strain by altering the protein environment.  相似文献   

13.
The effect of metal cation binding on bacteriorhodopsin (bR) in purple membrane has been examined using in situ attenuated total reflection-Fourier transform infrared difference spectroscopy in aqueous media. It is known that adding metal cations to deionized bR regenerates the purple state from its blue state and recovers the proton pump function. During this process, infrared spectral changes in the frequency region of 1800-1000 cm-1 are monitored. The results reveal that metal cation binding affects the protein conformation, the retinal isomeric composition as well as lipid head groups. It is also observed that metal cation binding induces conformational changes in the alpha 1-helix region of bR, converting the portion of its alpha 1-helical domain into beta-turn or disordered coil. In addition, the influence of Ho3+ binding on the protein and lipid is observed to be larger than that of Ca2+. These results suggest that some of the metal cation binding sites are on the membrane lipid domain, while others could be on the intrahelical domain or interhelical loops where the Asp and Glu are located (binding with their COO- groups). Our results also suggest that the removal of the C-terminal of bR increase the accessibility of the binding site of metal cations, which affects protein conformational structure. All these observations are discussed in terms of the two proposals given in the literature regarding the metal cation binding sites.  相似文献   

14.
Rhodopsins can modulate the optical properties of their chromophores over a wide range of wavelengths. The mechanism for this spectral tuning is based on the response of the retinal chromophore to external stress and the interaction with the charged, polar, and polarizable amino acids of the protein environment and is connected to its large change in dipole moment upon excitation, its large electronic polarizability, and its structural flexibility. In this work, we investigate the accuracy of computational approaches for modeling changes in absorption energies with respect to changes in geometry and applied external electric fields. We illustrate the high sensitivity of absorption energies on the ground-state structure of retinal, which varies significantly with the computational method used for geometry optimization. The response to external fields, in particular to point charges which model the protein environment in combined quantum mechanical/molecular mechanical (QM/MM) applications, is a crucial feature, which is not properly represented by previously used methods, such as time-dependent density functional theory (TDDFT), complete active space self-consistent field (CASSCF), and Hartree-Fock (HF) or semiempirical configuration interaction singles (CIS). This is discussed in detail for bacteriorhodopsin (bR), a protein which blue-shifts retinal gas-phase excitation energy by about 0.5 eV. As a result of this study, we propose a procedure which combines structure optimization or molecular dynamics simulation using DFT methods with a semiempirical or ab initio multireference configuration interaction treatment of the excitation energies. Using a conventional QM/MM point charge representation of the protein environment, we obtain an absorption energy for bR of 2.34 eV. This result is already close to the experimental value of 2.18 eV, even without considering the effects of protein polarization, differential dispersion, and conformational sampling.  相似文献   

15.
2-Aminopurine (2AP) is an adenine analogue that has a high fluorescence quantum yield. Its fluorescence yield decreases significantly when the base is incorporated into DNA, making it a very useful real-time probe of DNA structure. However, the basic mechanism underlying 2AP fluorescence quenching by base stacking is not well understood. A critical element in approaching this problem is obtaining an understanding of the electronic structure of the excited state. We have explored the excited state properties of 2AP and 2-amino,9-methylpurine (2A9MP) in frozen solutions using Stark spectroscopy. The experimental data were correlated with high level ab initio (MRCI) calculations of the dipole moments, mu0 and mu1, of the ground and excited states. The magnitude and direction of the dipole moment change, Deltamu01 = mu1 - mu0, of the lowest energy optically allowed transition was determined. While other studies have reported on the magnitude of the dipole moment change, we believe that this is the first report of the direction of Deltamu, a quantity that will be of great value in interpreting absorption spectral changes of the 2AP chromophore. Polarizability changes due to the transition were also obtained.  相似文献   

16.
Bacteriorhodopsin (bR) is a retinal protein in purple membrane of Halobacterium salinarum, which functions as a light-driven proton pump. We have detected pressure-induced isomerization of retinal in bR by analyzing 15N cross polarization-magic angle spinning (CP-MAS) NMR spectra of [zeta-15N]Lys-labeled bR. In the 15N-NMR spectra, both all-trans and 13-cis retinal configurations have been observed in the Lys N(zeta) in protonated Schiff base at 148.0 and 155.0 ppm, respectively, at the MAS frequency of 4 kHz in the dark. When the MAS frequency was increased up to 12 kHz corresponding to the sample pressure of 63 bar, the 15N-NMR signals of [zeta-15N]Lys in Schiff base of retinal were broadened. On the other hand, other [zeta-15N]Lys did not show broadening. Subsequently, the increased signal intensity of [zeta-15N]Lys in Schiff base of 13-cis retinal at 155.0 ppm was observed when the MAS frequency was decreased from 12 to 4 kHz. These results showed that the equilibrium constant of [all-trans-bR]/[13-cis-bR] in retinal decreased by the pressure of 63 bar. It was also revealed that the structural changes induced by the pressure occurred in the vicinity of retinal. Therefore, microscopically, hydrogen-bond network around retinal would be disrupted or distorted by a constantly applied pressure. It is, therefore, clearly demonstrated that increased pressure induced by fast MAS frequencies generated isomerization of retinal from all-trans to 13-cis state in the membrane protein bR.  相似文献   

17.
The explicit treatment of polarization as a many-body interaction in condensed-phase systems represents a current problem in empirical force-field development. Although a variety of efficient models for molecular polarization have been suggested, polarizable force fields are still far from common use nowadays. In this work, we consider interactive polarization models employing Thole's short-range damping scheme and assess them for application on polypeptides. Despite the simplicity of the model, we find mean polarizabilities and anisotropies of amino acid side chains in excellent agreement with MP2/cc-pVQZ benchmark calculations. Combined with restrained electrostatic potential (RESP) derived atomic charges, the models are applied in a quantum-mechanical/molecular-mechanical (QM/MM) approach. An iterative scheme is used to establish a self-consistent mutual polarization between the QM and MM moieties. This ansatz is employed to study the influence of the protein polarizability on calculated optical properties of the protonated Schiff base of retinal in rhodopsin (Rh), bacterio-rhodopsin (bR), and pharaonis sensory rhodopsin II (psRII). The shifts of the excitation energy due to the instantaneous polarization response of the protein to the charge transfer on the retinal chromophore are quantified using the high level ab initio multireference spectroscopy-oriented configuration interaction (SORCI) method. The results are compared with those of previously published QM1/QM2/MM models for bR and psRII.  相似文献   

18.
The retinal analogues 3-methyl-5-(1-pyryl)-2E,4E-pentadienal (1) and 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetr aenal (2), which contain the tetra aromatic pyryl system, have been synthesized and characterized in order to examine the effect of the extended ring system on the binding capabilities and the function of bacteriorhodopsin (bR). The two bR mutants, E194Q and E204Q, known to have distinct proton-pumping patterns, were also examined so that the effect of the bulky ring system on the proton-pumping mechanism could be studied. Both retinals formed pigments with all three bacterioopsins, and these pigments were found to have absorption maxima in the range 498-516 nm. All the analogue pigments showed activity as proton pumps. The pigment formed from wild-type apoprotein bR with 1 (with the shortened polyene side chain) showed an M intermediate at 400 nm and exhibited fast proton release followed by proton uptake. Extending the polyene side chain to the length identical with retinal, analogue 2 with wild-type apoprotein gave a pigment that shows M and O intermediates at 435 nm and 650 nm, respectively. This pigment shows both fast and slow proton release at pH 7, suggesting that the pKa of the proton release group (in the M-state) is higher in this pigment compared to native bR. Hydrogen azide ions were found to accelerate the rise and decay of the O intermediate at neutral pH in pyryl 2 pigment. The pigments formed between 2 and E194Q and E204Q showed proton-pumping behavior similar to pigments formed with the native retinal, suggesting that the size of the chromophore ring does not alter the protein conformation at these sites.  相似文献   

19.
Structural volume changes upon excitation of isomerization-blocked 5,12-trans-locked bacteriorhodopsin (bR) (bacterio-opsin + 5-12-trans-locked retinal) were studied using photothermal methods. The very small prompt expansion detected using laser-induced optoacoustics (0.3 mL/mol of absorbed photons) is assigned to a charge reorganization in the chromophore protein pocket concomitant with the formation of the intermediate T5.12. The subsequent contraction associated with a 300 ns lifetime is assigned to protein movements required to reach the entire chromoprotein free energy minimum, after the 17 ps optical decay of T5.12. The volume changes comprise the entropy of medium rearrangement during T5.12 formation and decay. The slow changes detected in previous studies by atomic force microscopy might be explained by the slowing down of movements in films containing 5,12-trans-locked bR. Photothermal beam deflection data with the 5,12-trans-locked bR suspensions indicate no further changes in microseconds to hundreds of milliseconds. Thus, all the absorbed energy is either released to the solution as heat or used for entropy changes within the first 300 ns after the pulse, supporting the paradigm that isomerization is required for signal transduction in retinal proteins. Bacterio-opsin assembled with all-trans-retinal afforded (similar to data reported with wild-type bR) an expansion of 2.6 mL/mol (assigned to the production of KE) followed by a further expansion of 0.8 mL/mol (KE-->KL; KE, KL, early and late K's) involving no heat loss. For KL decay to L, a contraction of 6 mL/mol of phototransformed reconstituted all-trans bR was determined.  相似文献   

20.
Electroabsorption (EA) spectra were recorded in the region of the reaction center (RC) Qy absorption bands of bacteriochlorophyll (Bchl) and bacteriopheophytin, to investigate the effect of carotenoid (Car) on the electrostatic environment of the RCs of the purple bacterium Rhodobacter (Rb.) sphaeroides. Two different RCs were prepared from Rb. sphaeroides strain R26.1 (R26.1-RC); R26.1 RC lacking Car and a reconstituted RC (R26.1-RC+ Car) prepared by incorporating a synthetic Car (3,4-dihydrospheroidene). Although there were no detectable differences between these two RCs in their near infrared (NIR) absorption spectra at 79 and 293 K, or in their EA spectra at 79 K, significant differences were detected in their EA spectra at 293 K. Three nonlinear optical parameters of each RC were determined in order to evaluate quantitatively these differences; transition dipole-moment polarizability and hyperpolarizability (D factor), the change in polarizability upon photoexcitation (Deltaalpha), and the change in dipole-moment upon photoexcitation (Deltamu). The value of D or Deltaalpha determined for each absorption band of the two RC samples showed similar values at 77 or 293 K. However, the Deltamu values of the special pair Bchls (P) and the monomer Bchls absorption bands showed significant differences between the two RCs at 293 K. X-ray crystallography of the two RCs has revealed that a single molecule of the solubilizing detergent LDAO occupies part of the carotenoid binding site in the absence of a carotenoid. The difference in the value of Deltamu therefore represents the differential effect of the detergent LDAO and the carotenoid on P. The change of electrostatic field around P induced by the presence of Car was determined to be 1.7 x 10(5) [V/cm], corresponding to a approximately 10% change in the electrostatic field around P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号