首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, direct method for photopatterning poly(p-phenylenevinylene) (PPV) from a xanthate precursor polymer is presented. The effect of UV exposure on the resultant PPV is examined by UV-Vis, XPS, FTIR, and DC conductivity measurements. By optimizing the photolithographic conditions, a spatial resolution of one micron is obtained, with minimal impact to the properties of the photopatterned PPV.  相似文献   

2.
We have found a simple method to prepare poly(phenylene vinylene) (PPV) nanofibers via electrospinning PPV precursor alcohol solution under annealed at 180 °C in a N2 atmosphere. The nanofibers are uniform in diameter and long in decimeter magnitudes with resistance in decay, which makes them have potential applications in optical and electronic devices. The morphology can be better controlled by blend PPV precursor solution with poly(vinylalcohol) (PVA) aqueous solution. The fluorescence spectrum of PPV/PVA nanofibers exhibited appreciable blue shift, which made it possible to fabricate nanofibers with fluorescence from yellow-green to blue.  相似文献   

3.
The electron energy structures and electrical properties of poly(p–phenylene vinylene) (PPV) and PPV/Au nanocomposite films were investigated to identify an effect of Au metal nanoparticles on a conjugated polymer. The current density in PPV/Au nanocomposite films was enhanced from an increase in the electron affinity with increasing Au nanoparticle content. The roughness of surface morphology was also observed with incorporation of Au nanoparticles. Then, an enhanced applied field could be developed at the thinner region of the film and an increase in the surface area with a resulting increase of electron injection, leading to an extra enhancement of the current.  相似文献   

4.
The synthesis of several highly phenylated PPV derivatives by a chlorine precursor route (CPR) was investigated in order to understand its scope. Three 1,4-bis(chloromethyl)benzene monomers were prepared via a robust and versatile synthetic procedure involving the Diels-Alder reaction. The monomers were then polymerized to the corresponding precursor polymers with about 1.0 equivalent of potassium t-butoxide in THF. Only one monomer gave a soluble precursor polymer while the other two gave insoluble precursor polymers. The soluble precursor polymer was deposited as thin films and then converted to the corresponding PPV derivative, which showed green photoluminesence and electroluminesence.  相似文献   

5.
A simple route for the synthesis of silver-protein (core-shell) nanoparticles using spent mushroom substrate (SMS) has been demonstrated in this work. SMS exhibits an organic surface that reduces silver ions and stabilizes the silver nanoparticles by a secreted protein. The silver nitrate solution incubated with SMS changed to a yellow color from 24 h onward, indicating the formation of silver nanoparticles. The purified solution yielded the maximum absorbance at 436 nm due to surface plasmon resonance of the silver nanoparticles. X-ray analysis of the freeze-dried powder of silver nanoparticles confirmed the formation of metallic silver. Transmission electron microscopic analysis of the samples showed a uniform distribution of nanoparticles, having an average size of 30.5 +/- 4.0 nm, and its corresponding electron diffraction pattern confirmed the face-centered cubic (fcc) crystalline structure of metallic silver. The characteristic fluorescence of the protein shell at 435 nm was observed for the silver nanoparticles in solution, when excited at 280 nm, while Fourier transform infrared (FTIR) spectroscopy confirmed the presence of a protein shell. The silver nanoparticles were found to be stable in solution for more than 6 months. It is observed that the reducing agents from the safflower stalks caused the reduction of silver ions while protein secreted by the fungus stabilized the silver nanoparticles. These silver nanoparticles showed excellent antibacterial activity against two representative bacteria, Staphylococcus aureus (Gram positive) and Klebsiella pneumoniae (Gram negative), in spite of the presence of an organic layer as a shell. Apart from ecofriendliness and easy availability, "SMS" as a biomanufacturing unit will give us an added advantage in ease of handling when compared to other classes of microorganisms.  相似文献   

6.
Blends of poly(p-phenylene vinylene) (PPV), with other polymers were made by film-casting from an aqueous mixture of the water-soluble sulfonium salt precursor to PPV and the second polymer. The rates of chemical doping, using As F5, and of electrochemical doping, using perchlorate counter ion, of the PPV component are strongly influenced by the nature of the added macromolecule. In all cases studied the blends appear to be phase separated under all conditions. The most versatile blend was with poly(ethylene oxide) (PEO), which could be heated to 225°C without degradation and which yielded the highest electrical conductivity when doped. The utility of blends was demonstrated using free-standing PPV/PEO blend samples as rechargeable battery electrodes.  相似文献   

7.
Homogenously dispersed organic (MEH‐PPV)/inorganic (nanosized titania) hybrids were successfully synthesized. The method of preparation was based on a simple one‐step in situ sol–gel technique using titanium isopropoxide (TIP) as the precursor. The key benefit of this preparation was that TIP interacted with both 2‐chlorophenol and MEH‐PPV, so that the degree of aggregation and phase separation could be kept to a minimum with a suitable recipe. MEH‐PPV/TIP/H2O/2‐chlorophenol of various weight ratios were synthesized to examine the morphology as well as optical properties of the MEH‐PPV/TIP(titania) hybrid. The observation of MEH‐PPV gelation and Fourier transform infrared results verified the interaction existing between MEH‐PPV and TIP. SEM photographs showed that TIP(titania) were homogenously dispersed in the MEH‐PPV film if the hybrid solution was clear from the use of a suitable recipe. UV–vis absorption measurements showed that the addition of TIP decreased the conjugation length of MEH‐PPV. A redshift in the photoluminescence (PL) emission was observed in almost all the hybrids in the solution state, because of the aggregation of MEH‐PPV. However, it was found that spinning destroyed the aggregation of MEH‐PPV, resulting in a blueshift in the PL emission of the hybrids. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 515–529, 2008  相似文献   

8.
A simple procedure based on magnetic nanoparticles has been developed for analytical purposes. In this method, 1-(2-pyridylazo)-2-naphthol (PAN)-modified magnetic nanoparticles (MNPs) were used for separation and pre-concentration of manganese(II) ions from aqueous samples. This method combines the use of a solution solvent with separation of magnetic nanoparticles from sample solution using a magnet. The influence of different parameters, such as amount of extractant (PAN) loaded on the nanoparticles, pH of solution, adsorption time, amount of modified nanoparticle, type and amount of eluents for desorption of manganese from magnetic nanoparticles were evaluated. The effect of various cationic and anionic interferences on the percentage recovery of manganese was also studied. Manganese ions were adsorped from a solution at pH 9.5 and desorbed from nanoparticles with 10?mL of DMSO?:?HNO3 (1?:?1, v/v). The detection limit of the proposed method was found to be 0.11?µg?L?1. The method was employed to recover and determine the level of manganese in different water samples.  相似文献   

9.
The conversion of the precursor into poly(phenylene–vinylene) (PPV) was studied by means of photoelectron spectroscopy (XPS) and electron spin resonance (ESR) on precursor films synthesized from the polymerization of pxylene-tetrahydrophenium halides. The sulfonium precursor containing chlorine or bromine was thermally converted to PPV and analyzed in situ using the spectrometers. It was found by XPS analysis that both halide precursors were thermally converted into polymer in a range of 190–250°C but traces of bromine were still present at >300 °C in the precursor containing Br. Furthermore, a small amount of oxygen in a ketone structure was also present in fully converted films. The ESR results corroborated the XPS experiments, showing a progressive disappearance of the radical distribution related to sulfur sites in a comparable temperature range. A discussion of the conversion process is given in terms of the modification of the core level spectra from XPS and the g distributions from ESR experiments. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis of two new polyphenylene vinylene (PPV) precursor polymers which can be thermally induced to eliminate pentanol is presented. Pentanol has recently been discovered to be a very useful lubricant in MicroElectroMechanical Systems. The utilization of the elimination reaction of precursor polymers to PPV as a small molecule delivery platform has, to the best of our knowledge, not been previously reported. The elimination reactions were examined using thermal gravimetric analysis, gas chromatography, and UV–Vis spectroscopy. Using PPV precursors allows for (1) a high loading of lubricant (one molecule per monomeric unit), (2) a platform that requires relatively high temperatures (>145 °C) to eliminate the lubricant, and (3) a non‐volatile, mechanically and chemically stable by‐product of the elimination reaction (PPV).  相似文献   

11.
The development of PPV-systems has moved from intractable powders to solution processible film-forming materials by introducing solubilizing phenyl groups. This opens new uses ranging from thin-film insulators, over photoconductive electrophotographic recording materials, to novel electroactive battery electrodes. In addition, the phenylated PPV may be utilized as a promising thin-film precursor for microstructured carbon patterns with a stable electrical conductivity (σ = 40 S/cm). PPV is not a metal-like conductor, but rather a high-ohmic photoconductor with a band gap of 2.4 eV. It can be made highly conducting upon appropriate chemical or electrochemical treatment (σ= 10−4 − 103 S/cm). The formation of coexisting polymeric ion radicals (polarons) and diions (bipolarons) is well understood in terms of the concept of chain segment redox reactions (ECS concept). A wide variety of PPV derivatives has been synthesized and characterized by their electrochemical oxidation and reduction potentials. Substituents like phenyl, methoxy and cyano groups have a significant influence on the redox potentials of PPV as the standard polymer (EOx = 0.8 V, ERed = −1.7 V). Thus, for poly(1,4-phenylene-1,2-diphenylvinylene) a broadening of the band gap up to 2.9 eV along with an increase of the oxidation potential up to 1.2 V is estimated. The knowledge of the redox potentials which reflect fundamental properties of conjugated polymers is essential for theoretical and practical reasons.  相似文献   

12.
In polymernanoparticle composites, uniform dispersion of the nanoparticles carries advantages over cases where nanoparticle aggregation dominates. Such dispersion has been particularly difficult to obtain in the case of composites prepared from nanoparticles and conjugated polymers. Here, we show that cadmium selenide nanocrystals, or quantum dots, can be integrated into thin films of poly(para-phenylene vinylene) (PPV) without aggregation. The two key departures from previous studies of quantum-dot/electronic polymer composites are (1) the synthesis of high-quality quantum dots directly in novel, functional ligands, thus eliminating the need for ligand exchange, and (2) polymerization chemistry that grafts PPV to the quantum dot surface. Solid-state photoluminescence spectra of composite materials prepared by these novel techniques reveal the critical importance of the quantum dot-polymer interface that will enable new investigations in nanoparticle-based light-emitting devices.  相似文献   

13.
以不同聚合度的聚乙烯吡咯烷酮(PVP)作为金纳米团簇的稳定剂和形状控制剂,应用电化学还原方法制备尺寸可控的金纳米晶体.借助PVP聚合物的动态伸缩和卷曲特性将电化学还原得到的金纳米粒子前驱体组装成线状和环状的纳米粒子聚集体,再由不稳定前驱体粒子的定向聚集制备厚度为几十纳米的金纳米棱柱.并用分步电化学还原法合成核壳结构的金银纳米复合粒子.本文为制备不同形状和结构的贵金属纳米结构材料提供了一种可行的电化学合成新方法.  相似文献   

14.
Poly(phenylene vinylene) (PPV) film was synthesized via a soluble precursor poly-mer. Strong fluorescence at 500-600nm was observed in both precursor and PPV film.Room-temperature conductivity of PPV film doped with FeCl_3 depends on the eliminationtemperature, the concentration of FeCl_3 and doping time. The maximum conductivity ofdoped PPV at room-temperature can reach about 40 S·cm~(-1). The temperature depen-dence of conductivity was controlled by 1D-VRH (1 Dimension Variable Range Hopping)model with T_0 value of 3.9×10~3 K. Non-Ohmic conductivity resulting from Schottky effectwas observed and the value of converted voltage from Ohmic region into non-Ohmic regionat the current-voltage characteristic was found to be dependent upon the work function ofelectrodes.  相似文献   

15.
A series of poly(p‐phenylenevinylene)s (PPVs) with good solubility were synthesized from thermal elimination of precursor poly(2,5‐didodecyloxy‐p‐phenylenevinylene) at different temperature via Wessling method. The polymer photophysics were influenced by the thermal elimination condition, which was consistent with NMR and IR characterizations. The additional absorption peak at longer wavelength and the red‐shifted emission maximum both in solution and in film, for PPVs obtained at high elimination temperature, indicated the existence of longer conjugated blocks in these systems. The emission maximum for drop‐cast film (436 nm) for PPV obtained under 200°C (PPV200) was 16 nm blue shifted to the spin‐coated films (452 nm) or 29 nm to the solution (465 nm). The SEM study showed drop‐cast film had the morphology of isolated conjugated particles in the matrix while blurry linear structure was found for spin‐coated film, which was consistent with the photophysics. The discussion about this difference was carried out based on the consideration of the flexibility of the polymer chains and different conjugated length of PPV in different states.  相似文献   

16.
In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.  相似文献   

17.
In the present work, we have demonstrated a facile approach to increase the luminescence of the poly (p-phenylenevinylene)s via controlling the molecular aggregates induced by pi-stacking. We have synthesized new bulky tricyclodecane (TCD) substituted PPVs: poly(2-methoxy-5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (MTCD-PPV), poly(bis-2,5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (BTCD-PPV), and a series of symmetrically substituted bulky PPV copolymers (P-1-P-7) covering the entire composition range from 0 to 100 mol %. The structures of the monomers and polymers were confirmed by 1H NMR and FTIR, and the molecular weights were determined by gel permeation chromatography. The composition analysis by NMR revealed that the bulky monomer was highly reactive and the incorporation of bulky units in MEH-PPV increased irrespective of the feed ratio. The polymers possess good solubility, high molecular weights, good thermal stability, and so forth. The molecular weights of the PPV copolymers were also significantly affected by the bulky substitution: the higher the incorporation of bulky units, the lower the molecular weight. The absorption and emission studies revealed that there was no influence on the MEH-PPV by TCD substitution in solution whereas in the solid state the photoluminescence intensity of PPV increased more than 10 times. The luminescence increase in PPV was observed throughout the entire bulk and was not confined to any particular domain in the polymer. The bulky PPV copolymers showed that both the luminescence intensity (in film) and quantum yields (in solution) increased with an increase in the extent of BTCD incorporation in the MEH-PPV and attained a maximum for 50% BTCD. The TCD unit has thus proved to be an efficient bulky susbstituent for PPV as it controls the pi-stack-induced molecular aggregates in the polymer chains by increasing the interchain distances. The new bulky PPV copolymers are highly soluble, thermally stable, and highly luminescent besides being economically cheap compared to the other materials reported so far for the bulkier approach in pi-conjugated materials.  相似文献   

18.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

19.
Two hydrophilic branched oligo(ethylene glycol)-substituted PPV derivatives, poly(2,5-bis(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (BTEMP-PPV) and poly(2-methoxy-5-(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (MTEMP-PPV), are presented. Polymerizations have been performed via the dithiocarbamate precursor route, using lithium hexamethyldisilazide (LHMDS) as a base, to obtain high molecular weight precursor polymers. After thermal conversion of the precursor polymers into the fully conjugated systems, the solubility of the polymers has been examined. The polar nonionic side chains of MTEMP-PPV and BTEMP-PPV render the PPV backbone soluble in a variety of solvents, including alcohols and even water, making these polymers suitable candidates to be used in optoelectronic devices that can be processed from environmentally friendly solvent systems.  相似文献   

20.
Novel organic nanoparticles self-assembled from the hexa[p-(carbonyl glycin methyl ester) phenoxy] cyclotriphosphazene (HGPCP) were prepared by a simple solution method. The as-prepared nanoparticles were extensively characterized by SEM, TEM, XRD, TGA, and fluorescence spectrum. The size of nanoparticles was increased with increasing the HGPCP concentration in solution. The effect of reaction conditions on the particle size and stability was further investigated. Based upon the experimental results, a growth mechanism was proposed for the formation of the nanoparticles. The obtained nanoparticles were highly thermal stable and exhibited strong fluorescent emission, which could be potential candidates for drug-loading carriers and tracer drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号