首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper the mineralization of CaCO(3) in various hydrogel matrices is presented. Sulfonic acid based hydrogels were prepared by introduction of sulfonate-containing monomers into a polyacrylamide network. The sulfonate content of polyacrylamide-co-vinylsulfonate and polyacrylamide-co-allylsulfonate decreases during elution of the copolymers in demineralized water, indicating insufficient linking of the sulfonate-bearing monomers within the hydrogel. In contrast to this, acrylamidomethylpropanesulfonate (AMPS) effectively copolymerizes with acrylamide (AAm) monomers. To study the influence of spatial arrangement of ionic functional groups within hydrogel networks on the mineralization of CaCO(3), AMPS copolymers with different degrees of AMPS cross-linking were synthesized. For the mineralization experiments the copolymers were placed into a double-diffusion arrangement. Calcite as the thermodynamically stable modification of CaCO(3) was obtained with a particular morphology. The pseudocubic habitus resembles aggregates obtained by mineralization in pure polyacrylamide. However, closer examination of the aggregates by scanning electron microscopy (SEM) shows that the crystal growth in the AMPS copolymers is different from that observed in polyacrylamide. Whereas the morphology of the calcite aggregates could be fine-tuned by using copolymers with different sulfonate content, the spatial distribution of the ionic functional groups alters the course of crystallization. Calcium ions are locally accumulated due to the heterogeneous distribution of functional sulfonate groups within the copolymer network. Thereby the nucleation of calcite is triggered, resulting in enhanced mineralization.  相似文献   

2.
A simple route to fabricate functional nano-objects via self-assembly of block copolymer-based hybrid materials is described. In water–toluene mixtures, spheres, rod-like morphologies, and ring-like morphologies as well as vesicles of metal loaded block copolymers micelles are fabricated. The concept is generic to realize different functionalities by incorporating various inorganic components (Au, Ag, Pt, Co…) into the block copolymer matrix. A mechanism describing the formation of micellar aggregates with different morphologies is presented based on a simple force balance approach. Moreover, the composition of the solvent mixture is modified to gain control over the morphology of micellar aggregates. It was found that swelling of the micelle core with a selective cosolvent is the driving force to induce morphology transitions from spherical to rod- and ring-like structures as well as vesicles. These nano-objects can be further used as building blocks to construct well-defined structures via self-assembly in spin coated thin films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1642–1650, 2010  相似文献   

3.
Fluorescence spectroscopy is used to probe local environments within regions of different polarity and hydrophobicity in aqueous aggregates of PEO(109)-PPO(41)-PEO(109) triblock copolymers. These copolymer aggregates have well characterized microphases in aqueous solution. Concentrations and temperatures for our studies are chosen such that the copolymers are in unimer, micellar, or micellar hydrogel forms. The observed fluorescence spectra and lifetimes from solutions individually labeled with each of the three coumarin probes report on the changes in the local polarity of the core, exterior, interfacial, and corona regions of these copolymer aggregates. This multiple fluorescence probe methodology will be straightforward to apply in general to problems in polymer and biopolymer aggregates, especially those that display strong hydrophobic effects.  相似文献   

4.
In this article, innovative applications of amphiphilic triblock and pentablock copolymers in the synthesis of gold nanoparticles are reported. The synthesis of gold nanoparticles is performed using two methods. In the first method, micellar aggregates of block copolymers and AuCl4? ions directly react in water; the nanoparticles obtained by this method are variable in size and are associated with copolymer aggregates. In the second method, two processes take place simultaneously: the aggregation of block copolymers and the reduction of Au (III) by the copolymers to form nanoparticles. In contrast with the first method, in this case, the nanoparticles obtained are located inside the copolymer aggregates. In both methods of synthesis, the block copolymers act simultaneously as reducing and stabilizing agents. To understand the role of copolymer aggregates in the synthesis of nanoparticles, molecular simulation methods are used. The gold nanoparticles, copolymer aggregates, and nanocomposite systems are characterized using transmission electron microscopy and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3069–3079  相似文献   

5.
Room temperature phosphorescence (RTP) of 6-bromo-2-naphthol has been investigated in aqueous micellar solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers as well as in their mixed aggregates with sodium dodecyl sulfate. RTP of the phosphorophor was enhanced to some extent in the micelles of the block copolymers. However, marked enhancement of RTP was observed in the mixed aggregates. The enhancement of RTP is attributed to effective incorporation of the phosphorophor into the micelles and the aggregates, resulting in suppression of nonradiative deactivation of the phosphorescent state.  相似文献   

6.
The micellar properties and solubilization capacity of poorly water soluble drugs of several micellar and gel solutions of diblock and triblock copolymers of styrene oxide/ethylene oxide have been measured and compared with block copolymers of butylene oxide/ethylene oxide, showing that the solubilization capacity of the styrene oxide block is approximately four times that of a butylenes oxide block for dilute solutions. To continue establishing the correlation between micellar characteristics and solubilization capacity, we have found it interesting to compare the micellar and gelation properties of the diblock and triblock copolymers PSO10PEO135 and PEO69PSO8PEO69 (subindexes are the number-average block lengths), with different architecture but similar average block lengths. Surface tension measurements allowed the determination of the critical micelle concentrations at several temperatures and, so, to calculate standard enthalpies of micellization. Static and dynamic light scattering data permitted us to determine micellar parameters and to obtain qualitatively the extent of hydration of the copolymer micelle. A tube inversion method was used to define the mobile-immobile (soft-hard gel) phase boundary. To refine the phase diagram and observe the existence of additional phases, rheological measurements were done. The results are in good agreement with previous values published for PSOnPEOm and PEOmPSOnPEOm copolymers.  相似文献   

7.
Alkyne-derivatized poly(ethylene glycol) (M.W. 5000) was coupled to several azide-terminated oligocholates by the click reaction to form amphiphilic block copolymers. A copolymer with a cholate hexamer as the hydrophobic block formed polymeric micelles that shrank by ~50% over a period of 10 h at 25°C. Shrinkage was faster and more dramatic at 35°C. Shortening the oligocholate by two units or inserting a 4-aminobutyroyl spacer in the hexacholate eliminated or diminished the shrinkage. Metastable aggregates were proposed to form when the block copolymers began to aggregate in water. The large hydrophobic surface, awkward shape, rigidity, and facial amphiphilicity of the cholate repeat unit and the long chain made it difficult for the oligocholates to adjust within the micellar core. As the oligocholates rearranged to maximize hydrophobic interactions and hydrogen-bonding while minimizing conformational strain, the polymeric micelles became more compact over time.  相似文献   

8.
Structural aggregates of rod-coil copolymer solutions   总被引:1,自引:0,他引:1  
The optoelectronic properties of rod-coil diblock copolymers with π-conjugation are greatly affected by molecular packing, which is closely related to their micellar morphology. Self-assembly of rod-coil block copolymer B(y)A(x) in a selective solvent for its coil block is studied by using dissipative particle dynamics, where B(y)A(x) denotes the polymer comprising of y rodlike B beads and x coil-like A beads. The influences of polymer concentration, component compatibility, solvent quality for coil block, rod-block length, and π-π interaction on the resulting aggregate conformations are examined. It was found that distinctly different from coil-coil copolymers, the aggregates of rod-coil copolymers exhibit morphological and structural diversity induced by the intrinsically rigid nature of the rod blocks. In general, the aggregate adopts the overall shape of sphere, cylinder, perforated sheet, or network. The morphology of the rod-block domain within aggregate is even richer and the interesting structures such as porous sphere, spherical spiral, helical bundles, discrete chunks, and nematic cylinder are observed. The short-range order parameter indicates that as rod length is long enough, neighboring rods begin to orient parallel to one another and nematic domains appear. Moreover, in the presence of π-π interactions, the neighboring rods within the B domains become more coherently oriented and smectic domains can thus be formed.  相似文献   

9.
Tuberculosis (TB) is the second most deadly infectious disease behind the Human Immunodeficiency Virus (HIV). An effective pharmacotherapy has been available for more than 5 decades. However, the length of the treatment and the pill burden result in low patient compliance and adherence to the regimens. Nanotechnologies can overcome these basic technological drawbacks. The present work explored the molecular implications governing the encapsulation and water solubilization of RIF within flower-like micelles of poly(epsilon-caprolactone)-b-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) block copolymers. Ten derivatives of different molecular weight and hydrophobic/hydrophilic caprolactone/ethylene oxide ratio (CL/EO) were synthesized by a fast and high-yield Microwave-Assisted Polymer Synthesis (MAPS) technique; CL/EO values are determined by taking the ratios of the number of repeating units in the PCL and the PEG segments. The aggregation behavior of the copolymers was thoroughly investigated by means of surface tension (critical micellar concentration), dynamic light scattering (size, size distribution and zeta potential) and transmission electron microscopy (morphology). In general, the greater the central PEG segment, the larger the micelles formed. The physical stability was intimately associated with the molecular weight and the composition. Then, the encapsulation of RIF in the different copolymer families was evaluated, and the physical stability of the drug-loaded aggregates characterized. The micellar size appears as the most crucial property, this phenomenon being primarily controlled by the molecular weight of the PEG central block. Having expressed this, sufficiently high CL/EO ratios (and long PCL segments) are also demanded to attain stable micellar systems with cores that are large enough to host the bulky RIF molecule.  相似文献   

10.
Polystyrene-based diblock copolymers, featuring diaminotriazine functionality on one of the blocks were used to assemble complementary uracil-functionalized nanoparticles into micellar aggregates. The size of these self-assembled aggregates was controlled by block length, as determined in solution (using dynamic light scattering), and in thin films (using transmission electron microscopy).  相似文献   

11.
The directed self-assembly of diblock copolymers in solvents is studied systematically using a simulated annealing method. Effects of the shape, scale, and adsorption capacity of the induced surface on the morphology of the aggregates are examined. A variety of morphologies are predicted. By increasing the scale of induced surface, the micellar shape transforms from cylinder to sheet with a tail and finally to thin sheet without tail. The shape of induced surface determines the sheet’s shape, such as rounded and square. Configurations of hydrophobic blocks and interfacial energies are investigated by calculating the mean square end-to-end distances and the contact numbers between hydrophobic monomer and other species, respectively.  相似文献   

12.
13.
A new and general design strategy is presented for amphiphilic block copolymers whose micellar aggregates can be dissociated by light. A diblock copolymer composed of hydrophilic poly(ethylene oxide) (PEO) and a hydrophobic polymethacrylate bearing pyrene pendant groups (PPy) was synthesized using ATRP. Upon UV light irradiation of polymer micellar solutions, the photosolvolysis of pyrene moieties results in their detachment from the polymer and converts the hydrophobic PPy block into hydrophilic poly(methacrylic acid). This effect leads to complete dissociation of polymer micelles.  相似文献   

14.
Two DNA-block copolymers, poly(caprolactone)-DNA and poly(methyl metacrylate)-DNA, were synthesized by conjugation of a short single strand of DNA (12 or 22 mer) to a single reactive group at one end of the synthetic polymer. These polymers self-assemble in water, without the need of any cosolvent, forming micelle-like aggregates that were imaged by TEM. The solution behavior of the bioconjugated polymers was investigated by surface tension measurements. In the direction of dilution, the surface tension was measured using a down-scaled Wilhelmy plate method. To proceed in the reverse direction (concentration), we measured the surface tension of a sessile drop during its evaporation. This latter method was firstly validated using ionic and non-ionic surfactants, including polymeric surfactants. It was then applied to investigate the unimer to micelles transition of the DNA-block copolymers. In all cases, a reversible transition was observed demonstrating the existence of a critical micellar concentration, close to 0.01 mmol L−1 for all the conjugates. The CMC was only slightly influenced by the length of the hydrophilic DNA block.  相似文献   

15.
Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers.  相似文献   

16.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
利用ATRP技术合成聚甲基丙烯酸甲酯-b-聚甲基丙烯酸丁酯(或聚甲基丙烯酸十八烷基酯)-b-聚(甲基丙烯酸2-全氟辛基乙酯)(PMMA230-b-PBMA12(或PODMA12)-b-PFMAn)嵌段共聚物.通过X射线光电子能谱(XPS)、X射线衍射(XRD)、动态光散射(DLS)等技术研究了中间段选择性成膜溶剂对氟化...  相似文献   

18.
Morphology and structure of aqueous block copolymer solutions based on polystyrene-block-poly(ethylene oxide) (PS-b-PEO) of two different compositions, a cationic surfactant, cetyl pyridinium chloride (CPC), and either platinic acid (H2PtCl6.6H2O) or Pt nanoparticles were studied using a combination of analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), and small angle neutron scattering (SANS). These studies combining methods contributing supplemental and analogous structural information allowed us to comprehensively characterize the complex hybrid systems and to discover an isotope effect when H2O was replaced with D2O. In particular, TEM shows formation of both micelles and larger aggregates after incorporation of platinic acid, yet the amount of aggregates depends on the H2PtCl6.6H2O concentration. AUC reveals the presence of micelles and micellar clusters in the PS-b-PEO block copolymers solution and even larger (supermicellar) aggregates in hybrids (with CPC). Conversely, SANS applied to D2O solutions of the similar species indicates that micelles are spherical and no other micellar species are found in block copolymer solutions. To reconcile the SANS and AUC data, we carried out AUC examination of the corresponding D2O block copolymer solutions. These measurements demonstrate a pronounced isotope effect on micelle aggregation and micelle size, i.e., no micelle aggregation in D2O solutions, revealing good agreement of AUC and SANS data.  相似文献   

19.
Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.  相似文献   

20.
The formation of micelles in a solvent that is selective for one of the blocks is one of the most important and useful properties of block copolymers. We had synthesized copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media. In the present work, we have utilized these nano micelles for the encapsulation of carbofuran, [2,3–dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate], a systemic insecticide-nematicide, for the development of controlled release formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号