首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead phosphate glasses containing Eu(3+) and Dy(3+) have been studied. Local structure was verified using Fourier transform (FT)-IR spectroscopy. Emission bands of Eu(3+) and Dy(3+) ions in lead phosphate glasses are observed in the visible spectral range, which correspond to 5D0→7F(J) (J=0,1,2,4) and 4F(9/2)→6H(J/2) (J=15,13,11) transitions, respectively. Shorter luminescence decays from excited states of Eu(3+) and Dy(3+0 are due to the presence of PbO in phosphate glass.  相似文献   

2.
Two lead-phosphate glass systems doped with both copper and vanadium ions in different ratios were studied by EPR (electron paramagnetic resonance) method. EPR spectra and parameters (g = 2.44, g = 2.08 andA = 117.6 · 10−4 cm−1) obtained for x(CuO · V2O5)(l−x)[2P2O5 · PbO] glasses withx ≤ 10 mol% suggest a tetrahedral (Td) coordination of Cu2+ ions and not a tetragonally elongated octahedron as has been assumed in previous works. The ground state of the paramagnetic electron is thed xy copper orbital with a 4pz contribution of 6%. For 20 ≤x ≤ 40 mol% a broad line (ΔB = 307 G) characteristic for clustered ions appears atg = 2.18. The V4+ ions are evidenced only in the spectra of x(CuO · 2V2O5)(1 −x)[2P2O5 · PbO] glasses and the resonance parameters suggest a pentacoordinated C4v local symmetry for these ions. The hyperfine structures characteristic for Cu2+ and V4+ ions disappear for 10 ≤x ≤ 40 mol% due to the mixed exchange Cu2+−V4+ pair formation in these glasses.  相似文献   

3.
Phosphate glasses doped with Mn4+ ion were prepared using high temperature melting method. Under 408 nm excitation, the peak wavelength and lifetime of the fluorescence are related to the Mn4+ ion concentration. With the increasing of Mn4+ ion concentration, the fluorescence wavelength varies from 605 nm to 685 nm and the lifetime increases from several microseconds to one millisecond. The fluorescence wavelength is variable and the lifetime is tunable for our materials.  相似文献   

4.
测试了不同掺杂浓度和不同厚度下Yb3+ 磷酸盐玻璃的吸收光谱、荧光光谱和荧光寿命 ,计算了积分吸收截面、吸收截面、受激发射截面、自发辐射寿命以及荧光有效线宽等光谱参数 ,讨论了荧光俘获效应对Yb3+ 磷酸盐玻璃光谱性质的影响 .结果表明荧光俘获效应随样品厚度和掺杂浓度的增加而增大 .由于荧光俘获效应的存在使得测量的Yb3+ 磷酸盐玻璃荧光寿命明显长于计算的荧光寿命 ,在 0 2mol%Yb2 O3低掺杂浓度下采用不同厚度 ( <4mm)的样品测量的荧光寿命之间误差为 3 0 %左右 ,高浓度 ( 6mol%Yb2 O3)掺杂下误差可达 43 % .荧光俘获还造成荧光谱线加宽 ,导致荧光有效线宽在低浓度 ( 0 2mol%Yb2 O3)时增加 14% ,在高掺杂浓度 ( 6mol%Yb2 O3)下增加 3 0 %以上  相似文献   

5.
The absorption and ESR spectra of multicomponent alumino-phosphate glasses doped with manganese (0·2–20 mol %) has been measured and compared with the absorption spectra of manganous and manganic ions in model solutions. The unirradiated glasses show in ultraviolet region increasing absorption below 200 nm with the shoulder at 235 nm and the absorption bands due to manganous oxygen complexes in octahedral symmetry. They are similar to the absorption bands of Mn2+ in concentrated H3PO4 acid. In irradiated glasses the bands at 200, 235, 275 (only if Mn is present) and a broad band at 540 nm appear. After the annealing at 450 C all radiation-induced bands disappear and the bands at 235 nm is more pronounced. The Mn3+ in H3PO4 solution exhibit the absorption spectrum with a weak band at 530 nm and a very intense band at 270 nm. It is therefore proposed that both the 540 and 275 nm bands in irradiated glasses can be assigned to octahedral oxygen complexes of Mn3+, i.e. to hole centres. The band at 200 nm which is practically independent of the modifiers (Be, Mg, Ca, Sr and Ba) is, therefore, associated with electron centres (electrons trapped in non-bridging oxygen vacancies). It is suggested that the band at 235 nm in irradiated and annealed glasses is associated with irreversible structural changes.The authors wish to express their appreciation to H.Dvoáková for preparing the solutions and E.Linhartová for careful measurements.  相似文献   

6.
Fe对掺钕磷酸盐激光玻璃激光性能的影响   总被引:2,自引:1,他引:2       下载免费PDF全文
 在理论分析的基础上,具体讨论了Fe质量分数小于10-4对1 053 nm处光吸收损耗和Nd3+无辐射跃迁几率的影响规律,发现Fe在1 053 nm处的光吸收损耗和Nd3+无辐射跃迁能量转移都与Fe质量分数成平方关系增长, Fe对1 053 nm光吸收的影响较大而Fe与Nd3+之间的能量转移不足50 Hz。这对生产过程中Fe含量的控制有重要指导意义。  相似文献   

7.
在理论分析的基础上,具体讨论了Fe质量分数小于10-4对1 053 nm处光吸收损耗和Nd3+无辐射跃迁几率的影响规律,发现Fe在1 053 nm处的光吸收损耗和Nd3+无辐射跃迁能量转移都与Fe质量分数成平方关系增长, Fe对1 053 nm光吸收的影响较大而Fe与Nd3+之间的能量转移不足50 Hz。这对生产过程中Fe含量的控制有重要指导意义。  相似文献   

8.
The electron spin-lattice relaxation rate (T 1 ?1) was measured in two glass samples: (i) a phosphate glass doped with 1 wt% Yb2O3 and (ii) a Li2Si4O9 glass sample doped with 0.2 wt% Gd2O3. In the Yb3+-doped glass sample,T 1 was measured by an electron-spin-echo technique from 4.2 to 6 K, by the modulation method from 10 to 26 K and by the EPR linewidth from 30 to 100 K. It was found thatT 1 ?1 αT n withn=9 in the range 4.2–6 K.n decreased gradually as the temperature was increased and tended towards 2 above 40 K. Over the entire temperature range 4.2–100 K,T 1 ?1 was fitted toAT+BT 9 J 8 (Θ D/T) (whereA andB are two temperature-independent constants,J 8 is the well-known Van Vleck integral andΘ D is the Debye temperature). The value ofΘ D (=46.3±0.9 K) so determined is in good agreement with that of Stevens and Stapleton from theirT 1 measurements in the range 1.5 to 7 K. In the Gd3+-doped glass, it was observed thatT 1 ?1 αT over the range 50–150 K. The data for Ye3+-doped glass sample were accounted for by assuming that the phonon modulation of the ligand field is the dominant mechanism, associated with a low Debye temperature in accordance with the published data obtained by using other techniques to study lattice dynamics. On the other hand, the data on the Gd3+-doped glass sample were explained to be predominantly due to a mechanism involving Two-Level-Systems (TLS)  相似文献   

9.
10.
Spectroscopic properties of Nd3+ in barium fluoroborophosphate glassy matrix have been analyzed by fitting the experimental data with the standard Judd-Ofelt theory. Various spectroscopic parameters viz. radiative transition probabilities, radiative decay time, fluorescence branching ratios, electric dipole line strengths, stimulated emission cross-sections and optical gain of the principal fluorescence transitions from the 4F3/2 metastable level are obtained. Results show that addition of borate content to the fluorophosphate matrix will reduce the fluorescence spectral properties of Nd3+. However, the radiative properties of the present fluoroborophosphate glassy matrix are found to be well improved over that of pure borate and phosphate matrix and is attributed to the influence of fluorine content in the glassy matrix. The changes in the position and the Judd-Ofelt intensity parameters are correlated with the structural changes in the host glass matrix. The shift of the hypersensitive band shows that the covalency of the rare earth to oxygen bond increases with the increase of Na2O content. This covalency effect and the formation of the BO4 groups with the addition of Na2O content are responsible for the increase in the radiative properties of the present system. Quantitative estimation of the non-radiative processes such as multiphonon relaxation and quenching by water content was carried out and the results show that both are below the critical level for optimum laser performance.  相似文献   

11.
Electron paramagnetic resonance (EPR), optical absorption, and luminescence spectral studies of Mn2+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xMnO2 (x=1.0, 2.0, 3.0, 4.0, and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g value at geff≈2.02 with six line hyperfine structure. A weak resonance signal with effective g value at geff≈4.3 is also observed for higher concentrations of Mn2+ ions. The EPR spectra of x =3.0 mol% of Mn2+ in sodium-lead borophosphate glass sample have been studied at various temperatures. It is observed that the resonance signal intensity decreases with increase in temperature. The optical absorption spectrum exhibits bands characteristic of Mn2+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibits single broad band in the green region.  相似文献   

12.
13.
14.
15.
掺杂Mn2+的浓度对CdS纳米颗粒光致发光的影响   总被引:2,自引:2,他引:0  
采用反胶束法,合成了硅土包裹的掺有不同浓度的Mn2 的CdS纳米颗粒.高分辨电镜表明这些颗粒的直径小于5 nm.仅仅改变Mn2 的掺杂浓度,研究了这些颗粒的光致发光谱和光致发光激发谱,结果表明:Mn2 浓度的大小对掺杂CdS纳米颗粒的发光产生了重要的影响.通过电子顺磁共振谱的测量和分析揭露了Mn2 浓度影响这些掺杂颗粒发光效率的原因.  相似文献   

16.
Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.  相似文献   

17.
18.
The Sm3+-doped lead fluorophosphate glasses of composition 44P2O5–17K2O–9Al2O3–(24?x)PbF2–6Na2O–xSm2O3, where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through differential thermal analysis, Raman, absorption and emission spectra and decay rate measurements. Free-ion Hamiltonian model for energy level analysis and Judd–Ofelt theory for spectral intensities have been used to analyze the spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. The decay rates for the 4G5/2 level of Sm3+ ions have been measured and are found to be single exponential at lower concentration (≤0.1 mol% Sm2O3) and turn into non-exponential at higher concentrations (≥0.5 mol% Sm2O3) due to energy transfer through cross-relaxation. The experimental lifetimes for 4G5/2 level of Sm3+ ions are found to decrease from 2.54 to 0.92 ms when the concentration increased from 0.01 to 2.0 mol% Sm2O3 due to energy transfer. In order to know the nature of the energy transfer mechanism, the non-exponential decay rates are well fitted to Inokuti–Hirayama model for S=6, which indicates that the energy transfer process is of dipole–dipole type.  相似文献   

19.
The two-photon absorption that leads to the ultraviolet upconversion luminescence in the SiO2-Al2O3-B2O3-Na2O3-Zr2O: Cd3+ glass has been investigated. The inference has been made that no photon cascade emission takes place under excitation by monochromatic light corresponding to the maximum of the absorption band of the Cd3+ ion (204 nm). The mechanisms of concentration quenching and energy transfer between Cd3+ ions and optically active defects of the aluminoborosilicate glass have been discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号