首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of tertiary structure on the electrospray ionization mass spectra of proteins is a well known and broadly exploited phenomenon. However, the underlying mechanism is not well understood. This paper discusses the bases and the implications of the two current hypotheses (solvent accessibility and Coulombic repulsions), pointing out the remaining open questions. Evidence reported here supports a third hypothesis, i.e. that intramolecular interactions in folded proteins play a key role in determining the observed charge-state distributions. It is proposed that native protein structures stabilize to a large extent pre-existing charges of the opposite polarity to the net charge of the ion, preventing their neutralization during the electrospray process. Thus, the higher charge states of unfolded conformations, relative to the folded structure, would not derive from a more extensive ionization of the former, but rather from a higher content of neutralizing charges in the latter. This interpretation allows several other problematic observations to be explained, including the different shapes of the spectra of folded and unfolded proteins, the discrepancies between observed and predicted gas-phase reactivity of protein ions and the apparent inconsistency of positive- and negative-ion mode results.  相似文献   

2.
Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution. This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational changes are difficult to separate from the effects of changing solvent on the ionization process. A novel strategy is presented enabling comparison of ESI mass spectra of a folded and partially unfolded protein of the same amino acid sequence subjected to the same experimental protocols and conditions. The N-terminal domain of the Escherichia coli DnaB protein was cyclized by in vivo formation of an amide bond between its N- and C-termini. The properties of this stabilized protein were compared with its linear counterpart. When the linear form was unfolded by decreasing pH, a charge envelope at lower m/z appeared consistent with the presence of a population of unfolded protein. This was observed in both positive-ion and negative-ion ESI mass spectra. Under the same conditions, this low m/z envelope was not present in the ESI mass spectrum of the stable cyclized form. The effects of changing the desolvation temperature in the ionization source of the Q-TOF mass spectrometer were also investigated. Increasing the desolvation temperature had little effect on positive-ion ESI mass spectra, but in negative-ion spectra, a charge envelope at lower m/z appeared, consistent with an increase in the abundance of unfolded protein molecules.  相似文献   

3.
Electrospray and laser spray mass spectra of human alpha-lactalbumin and bovine ubiquitin were studied, with an emphasis on the denaturation induced by laser spray. There were no remarkable differences in the electrospray and laser spray mass spectra for acidic and basic aqueous solutions of alpha-lactalbumin in positive and negative modes of operations. This originates from the fact that this protein is tightly folded with four disulfide bonds. For ubiquitin, however, denaturation was induced by laser spray for the positive mode of operation and the [M+nH](n+) with a maximum of n = 13 was observed, i.e., all the acidic amino acid residues are fully neutralized (protonated). In contrast, the laser-induced denaturation was not observed for the negative mode of operation, i.e., denaturation of ubiquitin is largely suppressed in the negatively charged liquid droplets. The marked difference observed in the positive and negative modes of operations for ubiquitin is ascribed to the difference in the susceptibility of side-chain/main-chain interactions in the positive-ion excess and in the negative-ion excess liquid droplets. That is, the interactions between the basic residues and main-chain amide carbonyl groups (-NH(3) (+)***O=C< or -NH(2)***O=C<) which play an important role in stabilizing the protein structures are not so affected in the negative mode of operation but are weakened in the positive mode of operation.  相似文献   

4.
The heme-globin complexes of hemoglobin and myoglobin are investigated in positive-ion mode and negative-ion mode using a nano-ESI source coupled to a quadrupole ion trap MS and an orthogonal time-of-flight MS. The extent of dissociation of these noncovalent complexes upon collisional activation and thus their gas-phase stability is strongly dependent on the polarity of the ESI-MS experiment as well as on the charge of the prosthetic group (ferri-heme [Fe3+-heme]+ vs. ferro-heme [Fe2+-heme]+/-0). The results clearly point to the important role of electrostatic interactions on the gas phase stability of noncovalent complexes and therefore the ion signals observed in ESI-MS experiments.  相似文献   

5.
The negative-ions of N-phosphoryl amino acids were studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The negative-ion ESI-MS/MS of N-phosphoryl amino acids showed characteristic fragmentation patterns different from those observed in the corresponding positive-ion ESI-MS/MS and negative-ion fast-atom bombardment mass spectra. For negative-ion ESI-MS/MS, a unique fragmentation from the N-terminal of N-phosphoryl amino acids or peptides containing a free beta-OH or CO(2)H group was observed to yield the characteristic fragment ion (RO)(2)P(O)O(-). The ease of the rearrangement depended on the position of the hydroxyl group in amino acids or peptides, and the N --> O rearrangement mechanism was proposed to involve the participation of the hydroxyl group. From previous solution-phase experiments and theoretical calculations, it was found that the beta-OH group was more active than gamma-OH, and the corresponding difference in negative-ion ESI-MS/MS was consistent with those previous findings.  相似文献   

6.
In an effort to understand the initiating step in metastable-ion decay of UV matrix-assisted laser desorption/ionization (MALDI)-produced ions, we conducted experiments in which we exchanged all active protons for deuterons of tetrameric and hexameric oligodeoxynucleotides. We wish to address the controversial proposal that in the negative-ion mode, as in the positive-ion mode, fragmentation is driven by nucleobase protonation. The results show unambiguously that proton transfer, leading to zwitterion formation, charges a nucleobase prior to its elimination. The zwitterion formation directs fragmentation of both positive and negative oligodeoxynucleotide ions. Poly-T-rich oligodeoxynucleotide tetramers show surprising differences in the negative compared to the positive-ion mode, as thymine is preferentially expelled, instead of a nucleobase with higher proton affinity. For the exceptional case of negatively charged poly-T-rich oligodeoxynucleotide tetramers generated by MALDI, we propose that zwitterion formation with positive charging of a nucleobase leads to base stabilization in the negative-ion mode through an interaction of the positive nucleobase with the excess negative charge. Moreover, backbone cleavages (accompanied by H rearrangement) of a phosophodiester bond give first-generation products that can be traced back to this tripolar complex bearing one positive and two negative charges, all of which may be interacting.  相似文献   

7.
The influence of the acidic and basic characters of constituent amino acid residues on the peptide fragment ions produced by in-source decay under matrix assisted laser desorption/ionization (MALDI) conditions has been studied using positive- and negative-ion experiments. Whereas the in-source decay spectra of peptides containing basic Arg and/or Lys residues near the N-terminus showed so-called cn- and an-series ions in positive-ion mode, a peptide that has an acidic amino acid cluster near the N-terminus and a basic residue near the C-terminus characteristically formed yn- and zn-series ions in the positive-ion in-source decay spectrum. These results indicated that fragment ion series produced by in-source decay depend strongly upon the acidic and basic characters of the constituent amino acid residues and the near N- and C-termini. It was suggested that in-source decay processes occur intrinsically at NH–Cα and CO–NH bonds independent of the formation of molecular-related ions, and that the cleavages at the NH–Cα and CO–NH bonds occurred independently and were dependent on the matrix used.  相似文献   

8.
Four groups of isomeric polynuclear aromatic hydrocarbons (PAH) were examined by gas chromatography/mass spectrometry (GC/MS) using positive-ion chemical ionization and negative-ion chemical ionization with a variety of reagent gases in order to evaluate the utility of each; differentiation of isomers was the ultimate goal. Hydrogen positive-ion chemical ionization (PICI) yielded different spectra for all but one isomer pair while retaining sensitivity comparable to electron-impact mass spectrometry. Several experimental conditions in the negative-ion mode afforded distinctly different spectra for isomeric PAH, but often sensitivities were reduced. The thirteen model compounds divided approximately into three classes according to the types and extent of reactions of the molecular anion. Class 1 gave as good sensitivity as hydrogen PICI; class 2 gave isomer-dependent spectra, but reduced sensitivity; class 3 gave no isomer differentiation, but greatly enhanced sensitivity.  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength (I?<?80?mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I?>?10?mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.  相似文献   

10.
Positive- and negative-ion MSn spectra of chicken egg yolk glycopeptides binding a neutral and a sialylated N-glycan were acquired by using electrospray ionization linear ion trap time-of-flight mass spectrometry (ESI-LIT-TOFMS) and collision-induced dissociation (CID) with helium as collision gas. Several characteristic differences were observed between the positive- and negative-ion CID MSn (n = 2, 3) spectra. In the positive-ion MS2 spectra, the peptide moiety was presumably stable, but the neutral N-glycan moiety caused several B-type fragmentations and the sialylated N-glycan almost lost sialic acid(s). In contrast, in the negative-ion MS2 spectra, the peptide moiety caused several side-chain and N-glycan residue (e.g., N-acetylglucosamine (GlcNAc) residue) fragmentations in addition to backbone cleavages, but the N-glycan moieties were relatively stable. The positive-ion MS3 spectra derived from the protonated peptide ion containing a GlcNAc residue (203.1 Da) provided enough information to determine the peptide amino-acid sequence including the glycosylation site, while the negative-ion MS3 spectra derived from the deprotonated peptide containing a 0,2X1-type cross-ring cleavage (83.1 Da) complicated the peptide sequence analysis due to side-chain and 0,2X1 residue related fragmentations. However, for the structural information of the N-glycan moiety of the glycopeptides, the negative-ion CID MS3 spectra derived from the deprotonated 2,4A6-type cross-ring cleavage ion (neutral N-glycan) or the doubly deprotonated B6-type fragment ion (sialylated N-glycan) are more informative than are those of the corresponding positive-ion CID MS3 spectra. Thus, the positive-ion mode of CID is useful for the analyses of peptide amino-acid sequences including the glycosylation site. The negative-ion mode of CID is especially useful for sialylated N-glycan structural analysis. Therefore, in the structural analysis of N-glycopeptides, their roles are complementary.  相似文献   

11.
Positive- and negative-ion fast-atom bombardment (FAB) mass spectrometry and linked-field scan techniques at constant B/E are used to characterize phosphorylated serine, threonine, and tyrosine amino acids. Abundant molecular ions are formed for all three amino acids in both modes of ionization. The dominant fragmentation is cleavage of the phosphate ester bond with charge retention in positive-ion FAB by the amino acid backbone and in the negative-ion mode by the phosphate group. The unique feature of positive-ion FAB mass spectra of phosphoserine and -threonine is the loss, from the ion [M + H]+, of a molecule of phosphoric acid (98 Da), whereas the corresponding tyrosine expels a HPO4 (96 Da) moiety to yield a stable phenylalanine ion.  相似文献   

12.
To investigate the possibility of structural assignment based on negative-ion MS2 spectral matching, three isomeric pairs of 2-aminopyridine (PA)-derivatized non-fucosylated, fucosylated, and sialylated oligosaccharides (complex type N-glycans) were analyzed using high-performance liquid chromatography/ion trap mass spectrometry (HPLC/ITMS) with a sonic-spray ionization (SSI) source. In the SSI negative-ion mode the deprotonated molecule [M-2H]2- becomes prominent. Negative-ion MS2 spectra derived from such ions contain many fragment types (B and Y, C and Z, A, and D) and therefore are more informative than the positive-ion MS2 spectra derived from [M+H+Na]2+ ions, which usually consist mainly of B and Y fragment ions. In particular the internal ions (D- and E-type ions) provided useful information about the alpha1-6 branching patterns and the bisecting GlcNAc residue. Spectral matching based on the correlation coefficients between negative-ion MS2 spectra was performed in a manner similar to the positive-ion MS2 spectral matching previously reported. It was demonstrated that negative-ion MS2 spectral matching is as useful and applicable to the structural assignment of relatively large non-fucosylated, fucosylated, and sialylated PA-oligosaccharide isomers as its positive-ion counterpart.  相似文献   

13.
The development of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and its demonstrated performance with large proteins has generated substantial interest in utilizing this technique as an alternative to gel electrophoresis for DNA sequence analysis. However, a lack of understanding of the desorption and ionization processes has greatly hampered advances in this field. This article explores the formation of positively charged oligonucleotides in UV (355-nm) MALDI analysis by using the matrix 2,5-dihydroxybenzoic acid. Whereas substantial fragmentation is observed in the positive-ion mode by using the short oligomer d(TAGGT), no fragmentation is evident in the negative-ion mode under identical conditions. The fragmentation products are consistent with a previously published model in which base protonation initiates base loss, which leads to subsequent cleavage of the phosphodiester backbone. Several polydeoxythymidilic acids containing modified nucleosides were used to investigate positive-ion formation. The results support the hypothesis that positive ions are formed by protonation of the nucleobases. Because base protonation initiates base loss, fragmentation is intrinsic to positive-ion formation in the MALDI analysis of oligonucleotides. This result explains the dramatic difference in fragmentation observed in positive-ion compared to negative-ion UV-MALDI mass spectra of oligonucleotides.  相似文献   

14.
Determining whether a protein regulates its net electrostatic charge during electron transfer (ET) will deepen our mechanistic understanding of how polypeptides tune rates and free energies of ET (e.g., by affecting reorganization energy, and/or redox potential). Charge regulation during ET has never been measured for proteins because few tools exist to measure the net charge of a folded protein in solution at different oxidation states. Herein, we used a niche analytical tool (protein charge ladders analyzed with capillary electrophoresis) to determine that the net charges of myoglobin, cytochrome c, and azurin change by 0.62±0.06, 1.19±0.02, and 0.51±0.04 units upon single ET. Computational analysis predicts that these fluctuations in charge arise from changes in the pKa values of multiple non‐coordinating residues (predominantly histidine) that involve between 0.42–0.90 eV. These results suggest that ionizable residues can tune the reactivity of redox centers by regulating the net charge of the entire protein–cofactor–solvent complex.  相似文献   

15.
The electrospray ionization (ESI) charge state distribution of proteins is highly sensitive to the protein structure in solution. Unfolded conformations generally form higher charge states than tightly folded structures. The current study employs a minimalist molecular dynamics model for simulating the final stages of the ESI process in order to gain insights into the physical reasons underlying this empirical relationship. The protein is described as a string of 27 beads ("residues"), 9 of which are negatively charged and represent possible protonation sites. The unfolded state of this bead string is a random coil, whereas the native conformation adopts a compact fold. The ESI process is simulated by placing the protein inside a solvent droplet with a 2.5 nm radius consisting of 1600 Lennard-Jones particles. In addition, the droplet contains 14 protons which are modeled as highly mobile point charges. Disintegration of the droplet rapidly releases the protein into the gas phase, resulting in average charge states of 4.8+ and 7.4+ for the folded and unfolded conformation, respectively. The protonation probabilities of individual residues in the folded state reveal a characteristic pattern, with values ranging from 0.2 to 0.8. In contrast, the protonation probabilities of the unfolded protein are more uniform and cover the range from 0.8 to 1.0. The origin of these differences can be traced back to a combination of steric and electrostatic effects. Residues exhibiting a small accessible surface area are less likely to capture a proton, an effect that is exacerbated by partial electrostatic shielding from nearby positive residues. Conversely, sites that are sterically exposed are associated with electrostatic funnels that greatly increase the likelihood of protonation. Unfolding enhances the steric and electrostatic exposure of protonation sites, thereby causing the protein to capture a greater number of protons during the droplet disintegration process.  相似文献   

16.
Electrospray ionization mass spectrometry (ESI-MS) can be used to monitor conformational changes of proteins in solution based on the charge state distribution (CSD) of the corresponding gas-phase ions, although relatively few studies of acidic proteins have been reported. Here, we have compared the CSD and solution structure of recombinant Vibrio harveyi acyl carrier protein (rACP), a small acidic protein whose secondary and tertiary structure can be manipulated by pH, fatty acylation, and site-directed mutagenesis. Circular dichroism and intrinsic fluorescence demonstrated that apo-rACP adopts a folded helical conformation in aqueous solution below pH 6 or in 50% acetonitrile/0.1% formic acid, but is unfolded at neutral and basic pH values. A rACP mutant, in which seven conserved acidic residues were replaced with their corresponding neutral amides, was folded over the entire pH range of 5 to 9. However, under the same solvent conditions, both wild type and mutant ACPs exhibited similar CSDs (6(+)-9(+) species) at all pH values. Covalent attachment of myristic acid to the phosphopantetheine prosthetic group of rACP, which is known to stabilize a folded conformation in solution, also had little influence on its CSD in either positive or negative ion modes. Overall, our results are consistent with ACP as a "natively unfolded" protein in a dynamic conformational equilibrium, which allows access to (de)protonation events during the electrospray process.  相似文献   

17.
In this paper, high performance liquid chromatography (HPLC) along with mass spectrometry (MS) and HPLC along with a diode array detector (DAD) was used to study the compound Ilex pubescens extract. Two ionization techniques: electro spray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were used in this work. The liquid chromatograms obtained by DAD, total ion chromatograms (TIC) from positive-and negative-ion ESI-MS and the positive-and negative-ion APCI-MS were compared. The liquid chromatograms obtained by TIC from ESI-MS provided more information on chromatographic peaks than those obtained by DAD or TIC from APCI-MS. It is suggested that the fingerprints of the compound Ilex pubescens extract should be provided by the liquid chromatograms obtained by DAD together with TIC from the negative-ion ESI-MS. The molecular weights of the nine main components in an HPLC-DAD chromatogram were determined by the corresponding positive-and negative-ion ESI and the positive-and negative-ion APCI mass spectra information. In the liquid chromatogram obtained by TIC from the negative-ion ESI-MS, the molecular weights of 23 main components were determined based on the corresponding positive-and negative-ion ESI mass spectra information.  相似文献   

18.
A mass spectrometric (MS) comparative study of dextran samples using two different ionization techniques (matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI)) in both positive- and negative-ion modes is reported. The experiments were carried out with two polydisperse dextrans (1000 and 8800 Da) and isomaltotriose. In the positive-ion mode, the expected alkali metal ion adducts of dextrans were observed in both techniques. In contrast, the expected preferential formation of deprotonated molecules [M - H](-) was not confirmed in negative mode MALDI time-of-flight (TOF) MS, where the series of ions [M(x)- H +42](-) or [M(x+1)- H - 120](-), coming either from some addition or fragmentation, were observed. In both ionization techniques, these ions formed the main distributions of dextrans in the negative-ion mode. It seems that the negative molecular ions formed from the alpha1 --> 6 linkage of polyglucose oligomers easily decompose, and the product ions [M - H - 120](-) markedly dominate. The fragmentation experiments and especially the investigation of the fundamental role of the nozzle-skimmer potential in ESI-MS supported our explanation of the observed behavior because its higher values caused higher fragmentation. The experiments with isomaltotriose excluded any addition of 42 Da during the MS procedures, which is not distinguishable from the loss of 120 Da in the case of polydisperse dextrans. MALDI-TOFMS was found to be more sensitive for the detection of higher oligosaccharides and ESI-MS more useful for structural studies.  相似文献   

19.
Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.  相似文献   

20.
Electron ionization (EI), chemical ionization (CI) and fast-atom bombardment (FAB) mass spectra of the marine toxin okadaic acid and its synthetic methyl, pentafluorobenzyl, and trimethylsilyl ester and ether derivatives were generated. Several ionization conditions and ion-processing methods were used to obtain positive- and negative-ion conventional spectra and tandem (MS/MS) spectra. The EI and the positive-ion CI spectra provided fragment ions characteristic of the structure, and the negative-ion CI and FAB spectra provided molecular ions. The addition of alkali salts to the FAB matrix resulted in reduced fragmentation and the formation of intense alkali-metal-cationized molecules. Pentafluorobenzyl ester derivatives provided intense carboxylate ions under electron-capture ionization. Analytically useful MS/MS spectra were obtained by low-energy collision-induced decomposition of the carboxylate anion produced from the tetrasilylated pentafluorobenzylokadaate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号