首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bubble detectors which are commonly used as neutron detectors have been demonstrated through this study to be good detectors for registration of high energy heavy ion tracks. Large size bubble detectors made in China Institute of Atomic Energy were irradiated to heavy ions Ar and C up to 650 MeV/u and 400 MeV/u, respectively. Very clear features of stringy tracks of high energy heavy ions and their fragmentations are manifested and distinguishable. A single track created by a specific high energy heavy ion is composed of a line of bubbles, which is visible by naked eyes and retained for months wihhout reduction in size. The creation of heavy ion tracks in bubble detectors is governed by a threshold whose essence is approximately a critical value of energy loss rate (dE/dX)c similar to that of etch track detectors. Ranges of heavy ions in bubble detectors are apparent and predictable by existing formulas. Identification of high energy heavy ions and the applications to heavy ion physics, cosmic rays, exotic particles and cancer therapy monitoring are obviously promising. The experimental and theoretical aspects of high energy heavy ion tracks in bubble detectors as well as the expectable applications are presented and discussed.  相似文献   

2.
Slow beams of neutral molecules are of great interest for a wide range of applications, from cold chemistry through precision measurements to tests of the foundations of quantum mechanics. We report on the quantitative observation of thermal beams of perfluorinated macromolecules with masses up to 6000 amu, reaching velocities down to 11 m/s. Such slow, heavy and neutral molecular beams are of importance for a new class of experiments in matter-wave interferometry and we also discuss the requirements for further manipulation and cooling schemes with molecules in this unprecedented mass range.  相似文献   

3.
The high level reached in the stability of laser sources and in the quality of optical components makes interferometric metrology appealing to those involved in the search for detection of gravitational waves (GWs). In this paper we present a readout for massive detectors of GWs, based on laser interferometry with high finesse Fabry–Pérot cavities, and describe the frequency stability of the laser source. The achievable sensitivity at the quantum limit level inherent to this technique requires a careful design, in order to reduce other sources of extra noise. In particular, we focus on the local effects of thermal and radiation pressure fluctuations and present an optical configuration that can reduce these effects below the quantum limit level.  相似文献   

4.
5.
The paper reports the application of Solid-State Nuclear Track Detectors to study the pulsed plasma-ion streams emitted from plasma-focus (PF) type discharges, which were performed within a low-energy PACO device constructed at Instituto de Fisica Arroyo Seco. The PACO device was operated under static initial gas conditions or with dynamic gas puffing. Studies of the structure of the fast deuteron beams were carried out within an energy range from 80 keV to about 2 MeV. Studies of ion energy and an ion angular distribution were also performed. The measurements showed that the fast deuterons are emitted in many “narrow” micro-beams, as in other larger PF devices. The anisotropy of the deuteron angular distribution was explained by the stochastic character of the formation of local ion sources within the PF discharge column.  相似文献   

6.
The relative TL efficiency of LiF:Mg, Ti and LiF:Mg, Cu, P was evaluated for several ion beams, ranging from helium to xenon ions. Irradiations were realized at the HIMAC accelerator in Chiba, Japan, partly within the ICCHIBAN intercomparison project. The covered LET range was extending from about 2 keV/μm to 1500 keV/μm.Both tested TLD types exhibited a decrease of relative response with increasing ionization density – stronger for LiF:Mg,Cu,P detectors. The relationship between efficiency and LET was found to follow unique trend lines, as nearly all data points lied within 5% around the fitted empirical functions. Values of TL efficiency measured for various batches of same type TLDs agree within a few percent. The measured relationships between relative TL efficiency and LET will be used in the analysis of data obtained from space dosimetric experiments.  相似文献   

7.
P K Chakraborti 《Pramana》1978,11(3):307-311
By means of refinements in the modulated molecular beam technique the signal-to-noise ratio can be greatly improved, and differential cross-sections, for collision of molecuies of the same species, can be measured. This was accomplished by combining beam modulation and phase sensitive detection with very sharp turning on the front end of the lock-in-amplifier and long integration times on the output. In addition, the signal-to-noise ratio of the Ar-Ar system as a function of integration time was investigated using two different types of electron bombardment detectors an Aberth ion-source and a quadrupole mass filter. With an integration time of 40 min the estimated upper limit to the signal-to-noise ratio is 1500 to 1 for the Aberth ion-source. Using quadrupole mass filter with an integration time of 60 min the estimated upper limit to the signal-to-noise ratio is 5 × 104 to 1. For chemical kinetics studies this ratio may be two orders of magnitude higher. Measurements were carried out at the Purdue University, Lafayette, Indiana, USA.  相似文献   

8.
Two-dimensional (2D) thermoluminescence (TL) dosimetry systems based on LiF:Mg,Cu,P, together with the newly developed, based on CaSO4:Dy, were tested under radiotherapy beams. The detectors were irradiated in a water phantom with 6 MV X-ray beams from linac and read with a dedicated TLD reader. Dose distributions of differently shaped fields and of a full stereotactic plan were measured and compared with planned distributions.Maximum distance-to-agreement (DTA) in the penumbra region was 1 mm for both LiF:Mg,Cu,P and CaSO4:Dy TL sheets, for all the measured fields. Maximum percentage dose difference (DA%) between planned and measured dose value in low dose gradient regions was up to 11% for LiF:Mg,Cu,P TL sheets and 18% for CaSO4:Dy TL sheets. Concerning the full stereotactic plan, the percentage of points with γ-index below 1 is 54.9% for the LiF:Mg,Cu,P-based foil and 96.9% for the CaSO4:Dy TL sheets. Both 2D TL detector types can be considered to be a promising tool for bi-dimensional dose measurements in radiotherapy. Non-homogeneity, presumably due to the TL sheets manufacture, still affects dosimetric distribution and the agreement between planned and measured distributions may depend on the chosen sample.  相似文献   

9.
Fission fragments and other charged particles leave tracks of permanent damage in most of the insulating solids. Damage track detectors are useful for personal dosimeters and for flux/dose determination of high-energy particles from accelerators or cosmic rays. A detector that has its principal response at nucleon energy above 50 MeV is provided by the fission of Bi-209. Neutrons produce the largest percentage of hadron dose in most high-energy radiation fields. In these fields, the neutron spectrum is typically formed by low-energy neutrons (evaporation spectrum) and high-energy neutrons (knock-on spectrum). We used Bi-fission detectors to measure neutron peak fluence and compared the result with the calculated value of neutron peak fluence. For the exposure to 100 MeV we have used the iThemba Facility in South Africa.  相似文献   

10.
Currently, there are no radiation detectors that can be used for routine measurements of linear energy transfer (LET) in particle therapy clinics. In this work, we characterized the LET dependence of Al2O3:C optically stimulated luminescence (OSL) detectors (OSLDs) exposed to therapeutic proton beams in order to evaluate their potential for clinical LET measurements. We evaluated OSLDs that were irradiated with an absorbed dose to water of 0.2 Gy in therapeutic proton beams with average energies ranging between approximately 25 MeV and 200 MeV, resulting in LET in water values between 0.45 and 2.29 keV/μm. We examined two properties of the OSL emission signal in terms of LET dependence: the signal intensities of the blue and ultraviolet (UV) emission bands, and the shapes of the OSL curves. We found that the signal intensity of the UV emission band increased consistently with LET within the range investigated, whereas the intensity of the blue emission band remained constant. Our results also demonstrated that the OSL curve shapes were more LET dependent for signals containing both the blue and UV emission bands than for signals containing only one of the bands. Both metrics we examined in this study – the relative UV/blue emission signal intensities and OSL curve shapes – show potential for LET detection in proton therapy.  相似文献   

11.
Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e+ beams exist producing of the order of 108–109 e+/s. Several laboratories are aiming at high intensity, high brightness e+ beams with intensities greater than 109 e+/s and current densities of the order of 1013–1014 e+ s–1 cm–2. Intense e+ beams can be realized in two ways (or in a combination thereof) either through a development of more efficient + moderators or by increasing the available activity of + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e+ collisions with atoms and molecules. Within solid state physics high intensity, high brightness e+ beams are in demand in areas such as the re-emission e+ microscope, two-dimensional angular correlation of annihilation radiation, low energy e+ diffraction and other fields. Intense e+ beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.  相似文献   

12.
Accelerating finite energy Airy beams   总被引:2,自引:0,他引:2  
We investigate the acceleration dynamics of quasi-diffraction-free Airy beams in both one- and two-dimensional configurations. We show that this class of finite energy waves can retain their intensity features over several diffraction lengths. The possibility of other physical realizations involving spatiotemporal Airy wave packets is also considered.  相似文献   

13.
In the standard model, all massive elementary particles acquire their masses by coupling to a background Higgs field with a non-zero vacuum expectation value. What is often overlooked is that each massive particle is also a source of the Higgs field. A given particle can in principle shift the mass of a neighboring particle. The mass shift effect goes beyond the usual perturbative Feynman diagram calculations which implicitly assume that the mass of each particle is rigidly fixed. Local mass shifts offer a unique handle on Higgs physics since they do not require the production of on-shell Higgs bosons. We provide theoretical estimates showing that the mass shift effect can be large and measurable, especially near pair threshold, at both the Tevatron and the LHC. PACS 14.80.Bn; 13.40.Dk  相似文献   

14.
Large liquid scintillation detectors have been generally used for low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat’s principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we call the “Fermat surface”, and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long baseline detector in this same beam, and LENA in Europe for future long baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.  相似文献   

15.
We present an approach to use Al2O3:C,Mg-based fluorescent nuclear track detectors (FNTDs) and confocal laser scanning microscopy as a semiautomatic tool for fluence measurements in clinical ion beams. The method was found to cover a linear energy transfer (LET) range from at least L(Al2O3) = 0.5 keV/μm to 61,000 keV/μm with a detection efficiency ≥99.83% (20 MeV protons) at particle fluences up to at least 5 × 107 per cm2. Our technique allows to determine the spatial fluence distribution on a microscopic scale and enables detailed track-by-track comparison studies between different fluence detectors.  相似文献   

16.
Neutrinos are the principal messengers reaching us from the center of a supernova. Terrestrial neutrino telescopes can provide precious information about the processes in the core of the star. But the information that a neutrino detector can supply is restricted by the fact that little experimental data on the neutrino-nucleus cross sections exist and by the uncertainties in theoretical calculations. In this Letter, we propose a novel procedure that determines the response of a target nucleus in a supernova-neutrino detector, by using low-energy beta beams. We show that fitting "synthetic" spectra, constructed by taking linear combinations of beta-beam spectra, to the original supernova-neutrino spectra reproduces the folded differential cross sections very accurately. Comparing the response in a detector to these synthetic responses provides a direct way to determine the main parameters of the supernova-neutrino energy distribution.  相似文献   

17.
18.
The paper reports on measurements of pulsed plasma-ion streams, as performed with the selected solid-state nuclear track detectors (SSNTD). The ion-beams were produced by an experimental device (RPI-IBIS) equipped with coaxial electrodes (each made of molybdenum rods) and a fast-acting gas valve. The device was operated at 30 kV/44 kJ, with puffing of pure hydrogen or deuterium. The spatial structure of the ion beams was studied with pinhole cameras equipped with replaceable detectors, and ion mass- and energy-spectra were measured with a Thomson spectrometer. To analyse low-energy ions (below the energy thresholds of LR 115A and PM-355 SSNTD) an additional accelerating system was applied. It was observed that ions of energy are emitted in bunches, and the ion flux amounts to at a distance of 30 cm from the electrodes outlet. Energy spectra of protons and deuterons ranged from about 30 keV to about 400 keV. The ion distributions, as recorded by means of the PM-355 and LR 115A detectors, are similar.  相似文献   

19.
We show that a very precise neutrino/anti-neutrino event separation is not mandatory to cover the physics program of a low energy neutrino factory and thus non-magnetized detectors like water Cerenkov or liquid Argon detectors can be used. We point out, that oscillation itself strongly enhances the signal to noise ratio of a wrong sign muon search, provided there is sufficiently accurate neutrino energy reconstruction. Further, we argue that apart from a magnetic field, other means to distinguish neutrino from anti-neutrino events (at least statistically) can be explored. Combined with the fact that non-magnetic detectors potentially can be made very big, we show that modest neutrino/anti-neutrino separations at the level of 50% to 90% are sufficient to obtain good sensitivity to CP violation and the neutrino mass hierarchy for sin213>10−3sin22θ13>10−3. These non-magnetized detectors have a rich physics program outside the context of a neutrino factory, including topics like supernova neutrinos and proton decay. Hence, our observation opens the possibility to use a multi-purpose detector also in a neutrino factory beam.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号