首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Force mapping with the atomic force microscope (AFM) allows the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with its specific antibody. However, to date this method has been limited to the detection of single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, force mapping would offer great scope as a sensitive tool for bioassay and screening applications. We have developed an immobilisation strategy, which allows two different molecular species (in this case human serum albumin and the β subunit of human chorionic gonadotropin) to be present simultaneously on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discriminate between their corresponding recognition points (anti-HSA and anti-βhCG IgG antibodies). As a control, force measurements were re-recorded in the presence of the known antigen (free in solution) for each antibody species and a marked decrease in the frequency of specific interaction is observed. As an additional control interactions between anti-βhCG IgG and the multifunctional probe are taken in the presence of free βhCG (“true” antigen) and free HSA (“false” antigen). It is shown that measurements recorded in the presence of a non-related protein species results in no change in either the force observed or the frequency of specific interactions, further confirmation that the specificity of force observed is due to the separation of antibody-antigen complex.  相似文献   

2.
Chemical force titrations-measurements of the adhesive interaction between a pair of suitably chemically modified atomic force microscopy (AFM) tip and sample surfaces as a function of pH-have been carried out for various combinations of silanol, amine, carboxylic acid, and sulfonic acid functional groups on both tip and sample. The primary surface material studied was poly(dimethylsiloxane) (PDMS). Surface modification was carried out using a plasma oxidation process to form silanol sites; further modification with amine or sulfonic acid sites was carried out by reaction of the silanol sites with the appropriate trialkoxysilane derivative. AFM tips were also modified using trialkoxysilane compounds. In the cases of tip/sample combinations with the same functional group on each, surface pK(1/2) values could be determined. In several "mixed" tip/sample combinations, a peak appeared in the titration curve midway between the surface pK(1/2) values of the tip and sample, consistent with an ionic H-bonding model for the interactions. The amine/sulfonic acid pair showed more complex behavior; the amine-terminated tip/sulfonic acid-terminated PDMS surface force titration curve consisted of two peaks centered at pH 4 and pH 8. Reversing the tip/sample pair resulted in the peak positions being shifted upward by 1.0 pH unit. The peak appearing at lower pH is assigned to electrostatic interactions between the two oppositely charged surfaces, whereas the higher pH peak is believed to arise due to ionic H-bonding interactions. AFM images show the effects on surface patterning of amine- and sulfonic acid-modified PDMS surfaces that have undergone two different oxidation methods (air plasma oxidation and Tesla coil oxidation). The surface morphologies of freshly prepared and 24 h aged air plasma oxidized PDMS are also discussed in this study.  相似文献   

3.
Chemical force titrations-plots of the adhesive force between an atomic force microscope tip and sample as a function of pH-were acquired on alkyl monolayer-derivatized Si(111) surfaces. Gold-coated AFM tips modified with thioalkanoic acid self-assembled monolayers (SAM) were employed. Alkyl monolayer-derivatized Si(111) surfaces terminated with methyl, carboxyl, and amine groups were produced via hydrosilylation reactions between 1-alkene reagents and H-terminated silicon. The functionalized surfaces were characterized using standard surface science techniques (AFM, FTIR, and XPS). Titration of the methyl-terminated surface using the modified (carboxyl-terminated) atomic force microscope tip resulted in a small pH-independent hydrophobic interaction. Titration of the amine-terminated surface using the same tip resulted in the determination of a surface pKa of 5.8 for the amine from the pH value from the maximum in the force titration curve. A pK(1/2) of 4.3 was determined for the carboxyl-terminated Si(111) in a similar way. These results will be discussed in relation to the modified Si(111) surface chemistry and organic layer structure, as well as with respect to existing results on Au surfaces modified with SAMs bearing the same functional groups.  相似文献   

4.
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.  相似文献   

5.
We report here the photochemical surface modification of poly(methyl methacrylate), PMMA, microfluidic devices by UV light to yield pendant carboxylic acid surface moieties. Patterns of carboxylic acid sites can be formed from the micrometer to millimeter scale by exposure of PMMA through a contact mask, and the chemical patterns allow for further functionalization of PMMA microdevice surfaces to yield arrays or other structured architectures. Demonstrated here is the relationship between UV exposure time and PMMA surface wettability, topography, surface functional group density, and electroosmotic flow (EOF) of aqueous buffer solutions in microchannels made of PMMA. It is found that the water contact angle on PMMA surfaces decreases from 70 degrees to 24 degrees after exposure to UV light as the result of the formation of carboxylic acid sites. However, upon rinsing with 2-propanol, the water contact angle increases to approximately 80 degrees , and this increase is attributed to changes in surface roughness resulting from removal of low molecular weight PMMA formed from scission events. In addition, the surface roughness and surface coverage of carboxylic acid groups exhibit a characteristic trend with UV exposure time. Electroosmotic flow (EOF) in PMMA microchannels increases upon UV modification and is pH dependent. The possible photolysis mechanism for formation of carboxylic acid groups on PMMA surfaces under the conditions outlined in this work is discussed.  相似文献   

6.
A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degrees for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJm2(nMm). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degrees C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degrees C or 50 min at 80 degrees C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.  相似文献   

7.
《Analytical letters》2012,45(17):2569-2579
With the aim of obtaining stable antibody immobilization on the poly(methyl methacrylate), PMMA channel surface, PMMA substrates were activated with O2 plasma treatment to introduce surface polar groups on it. The plasma-treated PMMA surfaces were characterized using water contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). It was observed that plasma treatment significantly improved the surface wettability with changing surface chemistry and topography. The strategy of immobilization of a model antibody, anti-goat IgG on plasma-treated PMMA involved two steps. First the plasma-treated PMMA was functionalized with (3-aminopropyl)thriethoxy silane, APTES off-chip which facilitated covalent capturing of antibody via a crosslinking agent in the inner surface of PMMA channel in the second step. The antibody immobilization on plasma-treated PMMA was also confirmed using AFM, XPS, and fluorescence microscopy. The anti-IgG covalently captured on channel surface was evaluated with sandwich ELISA protocol on-chip using fluorescence microscopy. The observed results demonstrate that this technique could be extended to integrate the current diagnostic techniques into the plastic chip for important biomarker diagnosis.  相似文献   

8.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

9.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   

10.
Gold-coated atomic force microscope (AFM) tips functionalized with amine-, hydroxyl-, carboxylic acid-, and methyl-terminated alkanethiol molecules were used to probe the adhesive forces of polystyrene and poly(acrylic acid) films in dry air (relative humidity < 0.5%). X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the quality and uniformity of similarly treated gold surfaces and the polymer films. XPS indicated that the amine-functionalized thiol films were protonated and comprised of multilayers. Contact angle data were used to calculate surface free energies, and DMT theory yielded the works of adhesion and interfacial free energies for the tip-substrate combinations. In the case of polystyrene, the work of adhesion followed the order methyl > carboxylic acid > hydroxyl > amine. For poly(acrylic acid), the observed order was hydroxyl > amine > carboxylic acid > methyl.  相似文献   

11.
While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.  相似文献   

12.
The structure and physicochemical properties of microbial surfaces at the molecular level determine their adhesion to surfaces and interfaces. Here, we report the use of atomic force microscopy (AFM) to explore the morphology of soft, living cells in aqueous buffer, to map bacterial surface heterogeneities, and to directly correlate the results in the AFM force-distance curves to the macroscopic properties of the microbial surfaces. The surfaces of two bacterial species, Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c, showing different macroscopic surface hydrophobicity were probed with chemically functionalized AFM tips, terminating in hydrophobic and hydrophilic groups. All force measurements were obtained in contact mode and made on a location of the bacterium selected from the alternating current mode image. AFM imaging revealed morphological details of the microbial-surface ultrastructures with about 20 nm resolution. The heterogeneous surface morphology was directly correlated with differences in adhesion forces as revealed by retraction force curves and also with the presence of external structures, either pili or capsules, as confirmed by transmission electron microscopy. The AFM force curves for both bacterial species showed differences in the interactions of extracellular structures with hydrophilic and hydrophobic tips. A. venetianus RAG-1 showed an irregular pattern with multiple adhesion peaks suggesting the presence of biopolymers with different lengths on its surface. R. erythropolis 20S-E1-c exhibited long-range attraction forces and single rupture events suggesting a more hydrophobic and smoother surface. The adhesion force measurements indicated a patchy surface distribution of interaction forces for both bacterial species, with the highest forces grouped at one pole of the cell for R. erythropolis 20S-E1-c and a random distribution of adhesion forces in the case of A. venetianus RAG-1. The magnitude of the adhesion forces was proportional to the three-phase contact angle between hexadecane and water on the bacterial surfaces.  相似文献   

13.
The design and initial characterization of the self-assembled gold colloid monolayer by a sandwich structure via the immunological identification are reported. The 13 nm gold colloid nanoparticles and the silicon or quartz substrates have been modified with the mouse polyclonal antibody against hepatitis B virus surface antigen (PAb) and the mouse monoclonal antibody against hepatitis B virus surface antigen (MAb), respectively. They can be linked by a special reaction with their corresponding hepatitis B virus surface antigen (Antigen) as a sandwich structure. Thus, the density of gold nanoparticles self-assembled on the substrate can be readily controlled by the amount of the antigen added. The resulting substrates have been characterized by atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy when the gold nanoparticles were modified with SERS-active probe molecules of 4-mercaptobenzoic acid (MBA) after silver enhancement. These data show that the gold nanoparticles are separately fixed onto the substrate and form a uniform monolayer, which possess a set of features that make them very attractive for both basic and applied uses, including roughness, high stability, and biocompatibility.  相似文献   

14.
Films of immiscible blends of (PS) and poly(methyl methacrylate) (PMMA) were characterized by contact-angle measurements with sessile drop and atomic force microscopy (AFM). These blends showed a linear dependence of the contact angles on the composition, as predicted by Cassie's equation for ideal surfaces. The surface structure investigated by AFM showed low roughness and phase-separation features. The ratio between the drop radius and the roughness amounted to the order of 104–105. This magnitude seemed to be sufficient to put the PS/PMMA films close to ideality. Upon sulfonation, the wettability and the microscopic surface roughness of the PS/PMMA blends increased. The treatment with sulfuric acid yielded sulfonated PS domains on the surface, causing an increase in the surface wettability. The SO3 groups were evidenced by X-ray photoelectron spectroscopy. The sulfonation of the PS/PMMA blends enables the formation of multiphase surfaces with hydrophobic, charged and polar domains. Received: 11 December 2000 Accepted: 6 April 2001  相似文献   

15.
The interactions of various polypeptides with individual carbon nanotubes (CNTs), both multiwall (MW) and single wall (SW), were investigated by atomic force microscopy (AFM). While adhesion forces arising from electrostatic attraction interactions between the protonated amine groups of polylysine and carboxylic groups on the acid-oxidized multi-wall carbon nanotubes (Ox-MWCNTs) dominate the interaction at a low pH, weaker adhesion forces via the hydrogen bonding between the neutral -NH2 groups of polylysine and -COO- groups of the Ox-MWCNTs were detected at a high pH. The adhesion force was further found to increase with the oxidation time for Ox-MWCNTs and to be negligible for oxidized single-wall carbon nanotubes (Ox-SWCNTs) because carboxylate groups were only attached onto the nanotube tips in the latter whereas onto both the nanotube tips and sidewall in the former. Furthermore, it was demonstrated that proteins containing aromatic moieties, such as polytryptophan, showed a stronger adhesion force with Ox-MWCNTs than that of polylysine because of the additional pi-pi stacking interaction between the polytryptophan chains and CNTs.  相似文献   

16.
A systematic evaluation of the effects of antibody immobilization strategy on the binding efficiency and selectivity (e.g., ability to distinguish between specific and nonspecific interactions) of immunosurfaces prepared with F(ab') antibody fragments of rabbit Immunoglobulin G (IgG) is described. F(ab') was attached to gold surfaces either (1) directly via the formation of a gold-thiolate bond or (2) indirectly through a series of a bifunctional linkers containing an alkane chain or ethylene glycol spacer. Immobilization of F(ab') via the sulfhydryl reactive group located opposite the antigen binding site ensured optimum orientation of the antigen binding site. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) were used to confirm surface modification with the bifunctional linkers and antibody immobilization, respectively. Binding efficiency assays performed with SPR indicated that increasing the length of the linker increased the antigen binding efficiency. Atomic force microscopy (AFM) adhesion force measurements indicated that AFM probes functionalized with directly immobilized F(ab') more effectively discriminated between specific and nonspecific surface-bound proteins than probes modified indirectly via linker-immobilized F(ab'). In addition, a greater number of antibody-antigen binding events were observed with directly immobilized F(ab')-functionalized probes.  相似文献   

17.
Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.  相似文献   

18.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

19.
The patterning and immobilization of protein molecules onto functionalized silicon substrate through surface silane chemistry is of interest because protein patterning is an important prerequisite for the development of protein-based diagnostics in biological and medicinal fields. As a model system, mesoscale netty lysozyme arrays were assembled on oxidized undecyltrichlorosilane (UTSox) monolayer coated silicon surface through nanosphere lithography. The size of the arrays ranged from nanometer to micrometer can be easily adjusted by changing the size of nanospheres applied on the surface. By using nanosphere lithography, we are capable of fabricating a regular array of protein islands over centimeter sample regions. The created lysozyme protein patterns were characterized by atomic force microscopy (AFM) and fluorescence microscope, respectively. The analysis has demonstrated that this newly established approach offers a faster and more reliable process to fabricate netty protein arrays over large areas compared to conventional scanning-probe based fabrication methods. Furthermore, the carboxylic acid-terminated layer on surfaces is particularly effective for immobilizing protein molecules through either electrostatic interactions or covalent attachment via imine bonds. Therefore, the negative-toned protein structure on the surface with carboxylic acid groups coated on the bare areas makes it possible to fabricate two types of protein molecules on one surface.  相似文献   

20.
采用原子力显微镜观测了由四氢呋喃和2-丁酮分别作为共溶剂制备得到的聚苯乙烯/聚甲基丙烯酸甲酯(PS/PMMA)共混物薄膜的表面形貌.研究发现,溶剂效应对共混物薄膜的表面形貌有较大影响,表面形貌中凸起与凹坑的组分分布是由溶剂效应决定的,与组分比无关.溶剂对不同组分的溶解能力不同还可以导致薄膜表面相逆转点的偏移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号