首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Intramolecular charge-transfer reaction in chiral (S) 1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM) has been investigated in the condensed phase and in jet-cooled conditions by means of laser-induced fluorescence, dispersed emission, resonance-enhanced two-photon ionization, and IR-UV double resonance experiments, as well as quantum chemical calculations. In the condensed phase, THIQM only shows local emission in nonpolar and protic solvents and dual emission in aprotic polar solvents, where the solvent-polarity dependent Stokes shifted emission is ascribed to a state involving charge transfer from the nitrogen lone pair to the benzene π-cloud. Ab initio calculations reveal two low-energy conformers, which are observed in jet-cooled conditions. In the most stable conformer, THIQM(I), the CH(2)OH substituent acts as a hydrogen bond donor to the nitrogen lone pair in the equatorial position, while the second most stable conformer, THIQM(II), corresponds to the opposite NH···O hydrogen bond, with the nitrogen lone pair in the axial position. The two low-energy jet-cooled conformers of THIQM evidenced from the laser-induced fluorescence and dispersed emission spectra only show structured local emission. Complexes with usual solvents reproduce the condensed phase properties. The jet-cooled complex with aprotic polar solvent acetonitrile shows both local emission and charge transfer emission as observed in solution. The jet-cooled hydrate mainly shows local emission due to the unavailability of the nitrogen lone pair through intermolecular hydrogen bonding.  相似文献   

2.
Seven different optimized conformers of α‐fluoroglycine (H2NCHFCOOH) were obtained from ab initio calculations. Some of these conformers are exceptionally stable compared to similar conformers of glycine. Conformers in which the lone pair of electrons on the nitrogen atom are antiperiplanar to the C F bond are more stable than conformers that do not have such an arrangement. The stability difference between conformers with such an arrangement and conformers that have the lone pair of electrons synperiplanar to the C F bond is about 27 kJ/mol (calculated at the MP2/6‐31+G* level). Conformers that have the lone pair of electrons antiperiplanar to the C F bond possess a longer C F bond, a shorter C N bond, and sp2‐like amino bond angles. For some conformers an unusual hydrogen bond involving the acidic carboxylic acid hydrogen and the electronegative fluorine atom is observed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 426–431, 2000  相似文献   

3.
在H_2O_2、N_2H_4、F_2分子中,O—O、N—N、F—F键的键长分别是0.148、0.148、0.144nm,虽比C_2H_6分子中的C—C键(0.154nm)短,但其σ键键能分别是146、160、155kJ/mol,却比C—C键能(365 kJ/mol)小约2.5倍,通常称这类原子的单键键能的反常现象为“孤对键弱化效应”。传统观点认为,半径很小的N、O、F等在化合时必须相当接近才能键合,孤对电子的排斥作用阻止了其相互接近,削弱了键能,降低了键的稳定性。显然,将这种削弱效应考虑为原子间效应是不合理的。本文用键参数图解法对“孤对键弱化效应”提出了合理的解释。  相似文献   

4.
The optimized geometry of isolated trimethylamine (TMA), its hydrogen bond complexes with phenol derivatives and protonated TMA is calculated at the B3LYP/6-31++G(d,p) level. A natural bond orbital (NBO) analysis on these systems is carried out at the same level of theory. In isolated TMA, one of the C-H bond in each of the three CH(3) groups is more elongated than the two other ones. As revealed by the NBO data, this results from a hyperconjugative interaction from the N lone pair to the sigma*(C-H) orbitals of the C-H bonds being in a transoid position with respect to the N lone pair. The formation of an intermolecular OH...N hydrogen bond with phenols results in a decrease of the lone pair effect. A linear correlation is found between the decrease in occupation of the sigma*(C-H) orbitals and the decrease in the hyperconjugative interaction energy in the complexes and isolated TMA. Complex formation with phenols results in a blue shift of 55-74 cm(-1) of the C-H stretching vibrations involved in the lone pair effect. Smaller blue shifts between 14 and 23 cm(-1) are predicted for the other C-H bonds. In these complexes, a linear correlation is found between the frequency shifts and the elongation of the C-H bonds. Protonation of TMA results in a nearly equalization of all the C-H distances and a blue shift of 180 cm(-1) of the C-H bonds involved in hyperconjugation with the N lone pair.  相似文献   

5.
The optimized molecular structures of seven conformations of 2,2-difluoroglycine have been obtained from ab initio calculations. For conformers in which the lone pair of electrons on the nitrogen are antiperiplanar to one of the C–F bonds, that C–F bond is longer than the other C–F bond, which is synperiplanar to the lone pair of electrons. Conformers which have these features are the most stable conformers of those examined. This observation is explained in terms of an anomeric effect of the 1p(N)→σ*(C–F). At the MP2/6-31G* level of calculation, conformers IV and V are 21.5 and 18.7 kJ/mol, respectively, more stable than the least stable conformer, VI, which does not exhibit an anomeric effect. Conformer VII was found to be exceptionally stable, in addition to an anomeric effect, this conformer also exhibits features of a FH–O hydrogen bond.  相似文献   

6.
Completely planar is the hydrogen-bonded complex of pyrazine and water (see sketch), which was obtained by supersonic expansion and investigated by rotational spectroscopy. The water molecule lies in the plane of the aromatic ring, and the lone pair of electrons on the nitrogen atom functions as the acceptor in the N⋅⋅⋅H–O hydrogen bond, not—as in the corresponding benzene complex—the π electrons.  相似文献   

7.
By locating all relevant transition structures with a hybrid density functional method, we explored the three most reasonable mechanisms for H2O2 epoxidation of propenol catalyzed by methyltrioxorhenium (MTO), namely: (i) coordination of propenol as lone pair donor to rhenium mono- and bis-peroxo complexes followed by intramolecular epoxidation, (ii) formation of a metal alcoholate, derived from addition of propenol to the Re complex with the formation of a metal-OR bond, followed by intramolecular epoxidation, (iii) intermolecular oxygen transfer assisted by hydrogen bonding where the rhenium complex acts as hydrogen bond acceptor and HOR as hydrogen bond donor. The computational results demonstrate that the last route is highly favored over the other two and, in particular, they provide the first unambiguous and compelling evidence that alcoholate-metal complexes, mechanism (ii), do not appreciably contribute to product formation. In keeping with experimental findings, theoretical data predict that the monoperoxo Re complex should be considerably less reactive than its bis(peroxo) counterpart and suggest that the hydrated form of the latter complex should be the actual active epoxidant species. All transition structures exhibit a distorted spiro-like structure, while the most stable ones feature hydrogen bonding to the attacking peroxo fragment with the olefinic OH group either in an "outside" (OC1C2C3 approximately 128 degrees ) or "inside" (OC1C2C3 approximately 14 degrees ) conformation. Previous qualitative models for transition structures of Re-catalyzed epoxidation of allylic alcohols are discussed in the light of our computational data.  相似文献   

8.
Electronic structure calculations have been carried out to provide a molecular interpretation for dihydrogen phosphate stability in water relative to that of metaphosphate. Specifically, hydration enthalpies of biologically important metaphosphate and dihydrogen phosphate with one to three waters have been computed with second-order M?ller-Plesset perturbation and density functional theory (B3LYP) with up to the aug-cc-pvtz basis set and compared to experiment. The inclusion of basis set superposition error corrections and supplemental diffuse functions are necessary to predict hydration enthalpies within experimental uncertainty. Natural bond orbital analysis is used to rationalize underlying hydrogen bond configurations and key orbital interactions responsible for the experimentally reported difference in hydration enthalpies between metaphosphate and dihydrogen phosphate. In general, dihydrogen phosphate forms stronger hydrogen bonds compared to metaphosphate due to a greater charge transfer or enhanced orbital overlap between the phosphoryl oxygen lone pairs, n(O), and the antibonding O-H bond of water. Intramolecular distal lone pair repulsion with the donor n(O) orbital of dihydrogen phosphate distorts symmetric conformations, which improves n(O) and sigma*(O-H) overlap and ultimately the hydrogen bond strength. Unlike metaphosphate, water complexed to dihydrogen phosphate can serve as both a hydrogen bond donor and a hydrogen bond acceptor, which results in cooperative charge transfer and a reduction of the energy gap between n(O) and sigma*(O-H), leading to stronger hydrogen bonds. This study offers insight into how orbital interactions mediate hydrogen bond strengths with potential implications on the understanding of the kinetics and mechanism in enzymatic phosphoryl transfer reactions.  相似文献   

9.
The gas-phase structures of N,N-dimethylvinylamine, (CH(3))(2)NC(H)=CH(2) (1), and perfluoro-N,N-dimethylvinylamine, (CF(3))(2)NC(F)=CF(2) (2), were determined by gas electron diffraction and quantum chemical methods (B3LYP and MP2 with 6-31G basis sets). The configuration around nitrogen is slightly pyramidal in both compounds, with the sum of the nitrogen bond angles 351.2(12) degrees and 354.8(6) degrees in 1 and 2, respectively. In the parent compound 1, the (CH(3))(2)N group lies nearly in the plane of the vinyl group, and the nitrogen lone pair (lp) is almost perpendicular to this plane (Phi(C=C-N-lp) = 98(6) degrees). In the perfluorinated species 2, however, the (CF(3))(2)N group is oriented perpendicular to the vinyl plane, and the lone pair is parallel to the C=C bond (Phi(C=C-N-lp) = 2(5) degrees). A natural bond orbital analysis provides a qualitative explanation for this conformational change upon fluorination. The sterically unfavorable in-plane orientation of the dimethylamino group in 1 is stabilized by conjugation between the nitrogen lone pair and the C=C pi-bond. The anomeric effect between the lone pair and the C(alpha)-F sigma-bond in addition to steric effects favors the perpendicular orientation of the (CF(3))(2)N group in 2. Both quantum chemical methods reproduce the experimental structures satisfactorily.  相似文献   

10.
The natural bond orbital (NBO) analysis, nucleus independent chemical shift (NICS), and 14N NQR parameters of the most stable tautomers of adenine in the gas phase were predicted using density functional theory method. The NBO analysis revealed that the resonance interaction between lone pair of the nitrogen atom and empty non‐Lewis NBO increases with increasing the p character of the nitrogen lone pair. The present investigation indicated the π clouds in both the considered heterocyclic rings containing six electrons, and these tautomers has the aromatic character. The NICS study utilizing the gauge‐invariant atomic orbital method showed that there are diatropic currents in the heterocyclic rings of the tautomers, so we determined the order of overall aromaticity of these tautomers. The results of NQR parameter calculations showed three parameters are effective on nuclear quadrupole coupling constant; the p character value of lone pair electrons of nitrogens, and the related occupancies and whenever, the lone pair electrons of nitrogens participate in the formation of chemical bond and/or π system of the ring, the qzz and consequently its χ decreases.  相似文献   

11.
在DFT-B3LYP/6-311++G**水平下求得CH3SH…HOO复合物势能面上的稳定构型. 计算结果表明, 在HOO以其O8—H7作为质子供体与CH3SH分子中的S5原子为质子受体形成的氢键复合物1和2中, O8—H7明显被“拉长”, 且其伸缩振动频率发生显著的红移, 红移值分别为330.1和320.4 cm-1; 在CH3SH分子以其S5—H6作为质子供体与HOO的端基O9原子为质子受体形成的氢键复合物3和4中, 也存在类似的情况, 但S5—H6伸缩振动频率红移不大. 经MP2/6-311++G**水平计算的4种复合物含BSSE校正的相互作用能分别为-20.81, -20.10, -4.46和-4.52 kJ/mol. 自然键轨道理论(NBO)分析表明, 在CH3SH…HOO复合物1和2中, 引起H7—O8键长增加的因素包括两种电荷转移, 即孤对电子n1(S5)→σ*(H7—O8)和孤对电子n2(S5)→σ*(H7—O8), 其中后者为主要作用. 在复合物3和4中也有相似的电荷转移情况, 但轨道间的相互作用要弱一些. AIM理论分析结果表明, 4个复合物中的S5…H7间和O9…H6间都存在键鞍点, 且其Laplacian量▽2ρ(r)都是很小的正值, 说明这种相互作用介于共价键和离子键之间, 偏静电作用为主.  相似文献   

12.
Nitrogen inversion and rotation around the N-O single bond in N, N-dialkoxyalkylamine systems are discussed in terms of a semi-empirical MO method which is essentially based on the concepts discussed by Mulliken in connection with the “magic formula”. By taking a simplified structural model and adjusting one empirical parameter, a satisfying agreement with experimental results is obtained. The results allow a chemically transparent interpretation and confirm, to a more quantitative extent, the previously discussed concepts [1]. The (spxp) promotion of the nitrogen lone pair strongly inhibits the inversion process and dominates the simultanous lowering of the σ-bond energies due to (i) the gain of s-character in the σ-involved nitrogen hybrid-AO's and (ii) the increased σ-bond overlaps. This dominance is considerably enhanced when electronegative ligands are attached to nitrogen. The total repulsion energy turns out to favour strongly the planar transition state and is essentially determined by the repulsions between the lone pair and the σ-bonds at nitrogen. Factorization into several repulsive contributions reveals that among these only one inhibits the inversion process, namely the repulsions between the nitrogen lone pair and the bonded and non-bonded electron pairs on the ligands. For the process of rotation around the N-O single bond a potential curve is obtained with two energy minima. The repulsion energy analysis shows that the shape of the potential curve is governed by the repulsions between the lone pairs on oxygen and nitrogen as well as the formally more or less “lone pair-like” σNC-bond. This situation is compared to the more general one in which essentially two lone pairs or formally more or less “lone pair-like” σ-bonds, on each of two adjacent centers, repel each other by conjugative destabilization; a situation which is realized for instance in molecules that show the anomeric effect.  相似文献   

13.
A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp2‐hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine‐type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Experimental and theoretical evidence is presented for a novel metal-dependent intramolecular reactivity of ~ -bonded, unsaturated P-heterocycles like 1,3-diphosphete and 1,3,5-triphosphinine. The nucleophilic attack of a P lone pair of 1,3-diphosphete toward a neighboring ligand leads to new bicyclic ligands with unique structural features. A metal-initiated intramolecular hydrogen transfer and C--C bond formation are observed for (1,3,5-triphosphinine)(COD)Fe to result in the formation of [(CO) 5 Cr(4,5,6-trihydro-1,3,5-triphosphinine)(trihydropentalene)Fe].  相似文献   

15.
DFT/B3LYP calculations were employed to study the effects of tautomerism and explicit/implicit water molecules on Nuclear Quadrupole Resonance (NQR) and Nuclear Magnetic Resonance (NMR) tensors of nitrogen nuclei in tetrazole‐5‐thione structure. The obtained results revealed that nuclear quadrupole coupling constant (χ) and isotropic chemical shielding (σiso) values of nitrogen nuclei in tetrazole ring of five possible tautomeric forms of tetrazole‐5‐thione, i.e. two thione forms called tautomers A and E and three thiol forms called tautomers B, C, and D, were functions of resonance energy(E2) values of nitrogen lone pairs. Furthermore, it was observed that by increasing participation of lone pairs of nitrogen atoms in the ring resonance interactions, the σiso values around them were increased, while their χ and qzz values were decreased. However, the results indicated that with exception of tautomer B, the order of qzz and χ values of nitrogen nuclei in tetrazole ring was exactly opposite of the order of resonance energy values for the same nitrogen nuclei in all tautomers and their mono‐hydrated complexes. In addition, a significant decrease was noticed in χ and qzz values when a water molecule was put in different positions near the tetrazole ring in tautomers A–E. The mentioned result can be attributed to hydrogen bond formation between nitrogen nuclei and the oxygen of water. In mono‐hydrated complexes, the σiso values around nitrogen atoms acting as hydrogen donors in hydrogen bond formation (N―H….OH2) were decreased, while its values were increased for nitrogen atoms acting as hydrogen acceptors in hydrogen bond formation(N….H―OH). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
发展了应用于鸟嘌呤G和氨基酸残基体系的浮动电荷力场, 该力场明确定义了孤对电子和键的电荷和位置, 通过电荷随着环境的浮动来体现极化效应; 通过氢键拟合函数kHB描绘了氢键键能. 应用量子化学方法, 对G与氨基酸残基体系从氢键、 几何结构及电荷分布3个方面展开计算及分析, 并以其为基准, 确定参数发展了适用于G与氨基酸残基氢键体系的ABEEMσπ PFF. 采用3种不同力场模拟目标分子的结构和性质. 模拟结果表明, 发展的ABEEMσπ PFF与量子化学方法具有最好的一致性, 可用于模拟生物大分子体系.  相似文献   

17.
The importance of intermolecular interactions in biology and material science has prompted chemists to explore the nature of the variety of such interactions. The strongest of these interac-tions are the hydrogen bonds, which play an important role in determining the molecular confor-mation, crystal packing, and the structure of biological systems such as nucleic acids. Extensive experimental and theoretical efforts[1—5] have been devoted to the studies of this type of interac-tions, such as …  相似文献   

18.
The neutral form of the unnatural amino acid phenylglycine was vaporized by laser ablation, and the presence of two conformers was detected in a supersonic expansion by Fourier transform microwave spectroscopy. Both conformers were unequivocally identified by comparison of their experimental rotational and quadrupole coupling constants with those calculated ab initio. The most stable conformer is stabilized by intramolecular hydrogen bonds N-H...O=C, N-H...pi (with the closest C-C bond in the aromatic ring), and a cis-COOH interaction. The other conformer exhibits a O-H...N hydrogen bond between the hydrogen atom of the hydroxyl group and the lone pair at the nitrogen atom.  相似文献   

19.
Hydration effects on the C[Triple Bond]N stretching mode frequencies of MeCN and MeSCN are investigated by carrying out ab initio calculations for a number of MeCN-water and MeSCN-water complexes with varying number of water molecules. It is found that the CN frequency shift induced by the hydrogen-bonding interactions with water molecules originate from two different ways to form hydrogen bonds with the nitrogen atom of the CN group. Considering the MeCN- and MeSCN-water cluster calculation results as databases, we first examined the validity of vibrational Stark effect relationship between the CN frequency and the electric field component parallel to the CN bond and found no strong correlation between the two. However, taking into account of additional electric field vector components is a simple way to generalize the vibrational Stark theory for the nitrile chromophore. Also, the electrostatic potential calculation method has been proposed and examined in detail. It turned out that the interactions of water molecules with nitrogen atom's lone pair orbital and with nitrile pi orbitals can be well described by the electrostatic potential calculation method. The present computational results will be of use to quantitatively simulate various linear and nonlinear vibrational spectra of nitrile compounds in solutions.  相似文献   

20.
The hydrogen-bonded complex between 6-oxabicyclo[3.1.0]hexane and hydrogen chloride was investigated by microwave spectroscopy in a supersonic jet. A dual flow pulsed valve was used to preclude chemical reaction between the monomers. Only the equatorial conformer was observed and the spectra of three isotopomers, (C5H8O, H35Cl), (C5H8O, H37Cl) and (C5H8O, D35Cl), were measured. The derived structure of the complex has Cs symmetry with the hydrogen chloride pointing to the domain of the equatorial lone pair of electrons at the oxygen atom. The three atoms involved in the hydrogen bond adopt a bent arrangement with a O...H distance of 1.77(4) A, a (O...H-Cl) angle of 115(4)degrees, and a deviation of 15.4(14)degrees of the hydrogen bond from collinearity. In agreement with the experimental results, ab initio calculations predict the equatorial form to be the most stable one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号