首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1 INTRODUCTION As a versatile ligand, N3- has been attracted great interest for several decades. In addition to mono- dentate coordination through a single N-donor, the azide group is not only an efficient antiferromag- netic coupler in the 1,3-fashion…  相似文献   

2.
Mononuclear oxovanadium(IV) and dioxovanadium(V) complexes of tris(2-pyridylmethyl)amine (tpa) have been prepared for the first time. Crystal structure determinations of three oxovanadium(IV) complexes, [VO(SO4)(tpa)], [VOCl(tpa)]PF6, or [VOBr(tpa)]PF6, and a dioxovanadium(v) complex [V(O)2(tpa)]PF6 disclosed that the tertiary nitrogen of the tpa ligand always occupies the trans-to-oxo site. The structures of an oxo-peroxo complex [VO(O2)(tpa)]Cl that was prepared previously and of a mu-oxo vanadium(III) complex [{VCl(tpa)}2(mu-O)](PF6)2 have also been determined. The tertiary nitrogen is located at a trans site to the peroxo and chloride ligands, respectively. The total sums of the four V-N bond lengths from the tpa ligand are remarkably similar among the six complexes, indicating that the vanadium oxidation states become less influential in tpa bonding due primarily to the coordination of electron-donating oxo ligand(s). Absorption spectra of [VOCl(tpa)]+ in acetonitrile showed a significant change upon addition of p-toluenesulfonic acid and HClO4, but not on addition of benzoic acid. Protonation at the oxo ligand by the former two acids is suggested. Cyclic voltammetric studies in acetonitrile verified the proton-coupled redox behavior of the V(III)/V(IV) process involving the oxo ligand for the first time. From the dependence of the added p-toluenesulfonic acid to the CV, redox potentials for the following species have been estimated: [V(IV)OCl(tpa)]+/[V(III)OCl(tpa)](E1/2=-1.59 V vs. Fc+/Fc), [V(IV)(OH)Cl(tpa)]2+/[V(III)(OH)Cl(tpa)]+(Epc=-1.34 V), [V(IV)(OH2)Cl(tpa)]3+/[V(III)(OH2)Cl(tpa)]2+(Epa=-0.49 V), and [V(IV)Cl2(tpa)]2+/[V(III)Cl2(tpa)]+(E1/2=-0.89 V). The reduction of [V(V)(O)2(tpa)]+ in 0.05 M [(n-Bu)4N]PF6 acetonitrile showed a major irreversible reduction wave V(V)/(IV) at -1.48 V. The metal reduction potentials of the oxovanadium(IV) and dioxovanadium(V) species are very close, reinforcing the significant influence of the oxo ligand(s).  相似文献   

3.
《Polyhedron》2001,20(7-8):695-702
Three Co(III) complexes of the type [Co(salophen)(amine)2]ClO4, salophen=N,N′-disalicylidene-1,2-phenylendiamine dianion and amine=morpholine (1), pyrrolidine (2), and piperidine (3), have been synthesized and characterized by elemental analysis, IR, UV–Vis, 1H, and 13C NMR spectroscopy. [Co(salophen)(morpholine)2]ClO4 (1) and [Co(salophen)(pyrrolidine)2]ClO4 (2) have been studied by X-ray diffraction. Compound 1 crystallizes in ribbons of complexes and perchlorates held together by weak NH⋯O and CH⋯O hydrogen bonds between morpholines and perchlorates. The latter also interconnect the chains to a 3D network. Some minor π–π interactions exist. Compound 2 crystallizes as endless chains of complexes linked by weak CH⋯O hydrogen bonds to the disordered perchlorates. The pyrrolidine moiety is turned by 90° with respect to 1 and forms intramolecular NH⋯O hydrogen bonds. The coordination polyhedra of 1 and 2 possess Cs symmetry, and the salophens are not planar in either of them.  相似文献   

4.
Reaction of MnCl(2).4H(2)O with H(3)L (H(3)L = tris(6-hydroxymethyl-2-pyridylmethyl)amine) in methanol gives hepta-coordinated [Mn(H(3)L)]Cl(2) involving attachment of Mn(II) to all four nitrogens and three hydroxymethyl arms. Reaction of H(3)L with Fe(ClO(4))(2).6H(2)O in CH(3)CN in the presence of NaO(2)CC(6)H(5) in an attempt to make [Fe(III)OH(H(3)L)(O(2)CC(6)H(5))](ClO(4)), a putative model for soybean lipoxygenase-1, instead gave rise to the linear triiron(III) complex [Fe(3)L(2)](ClO(4))(3) with all three hydroxymethyl arms deprotonated and forming three alkoxide bridges between each Fe(III) centre. The central Fe(III) is hexa-coordinated to only the alkoxide bridges and flanked by two hepta-coordinated iron(III) centres analogous to the Mn(ii) complex. [Fe(3)L(2)](ClO(4))(3) exhibits two reversible 1e(-) reductions to mixed-valence [Fe(3)L(2)](2+) and [Fe(3)L(2)](+) forms. Structure data and magnetochemistry on [Fe(3)L(2)](ClO(4))(3) reveals the tightest Fe-O-Fe angle (87.4 degrees ) and shortest Fe...Fe distance (2.834 A) yet found for any weakly antiferromagnetically-coupled high spin alkoxide-bridged di- or triiron(iii) system and challenges current theories involved in correlating the extent/nature of magnetic interactions in such systems based on Fe-O(bridge) distances and Fe-O-Fe angles. The central hexa-alkoxide coordinated Fe(III) is novel and shows a remarkable resistance towards reduction to Fe(II).  相似文献   

5.
[(TPA)(OH)FeIIIOFeIII(OH)(TPA)][Fe(CA)3]0.5(BF4)0.5.1.5MeOH.H2O (1) which possesses both the [FeIII(CA)3]3- (CA= chloranilate) and hydroxooxoiron(III) ions has had its structure determined by single-crystal X-ray diffraction. The 2-300 K magnetic susceptibility of 1 provides the magnetic parameters, g = 2.07, J/kB = -165 K (115 cm-1), theta = -1 K, and the spin impurity, rho = 0.05, which indicates a strong antiferromagnetic interaction between iron(III) ions via the oxo anion.  相似文献   

6.
Mn(II)(TCNE)[C(4)(CN)(8)](1/2) (TCNE = tetracyanoethylene) exhibits a reversible pressure-induced piezomagnetic transition from a low magnetization antiferromagnetic state to a high magnetization ferrimagnetic state above 0.50 ± 0.15 kbar. In the ferrimagnetic state, the critical temperature, T(c), increases with increasing hydrostatic pressure and is ~97 K at 12.6 kbar, the magnetization increases by 3 orders of magnitude (1000-fold), and the material becomes a hard magnet with a significant remnant magnetization.  相似文献   

7.
Density functional theory using the B3LYP hybrid functional has been employed to study the formation of [Cu(II)(TPA(H))(O2-)]+ and [Cu(II)(TPA(MeO))(O2-)]+ (TPA = tris(2-pyridylmethyl)amine) in two different solvents, THF and EtCN. The thermodynamics of solvent coordination as well as that of the overall reactions with O2 has been computed. The formations of [Cu(II)(TPA(H))(O2-)]+ in THF and of [Cu(II)(TPA(MeO))(O2-)]+ in both THF and EtCN are found to be initiated from the [Cu(I)(TPA(R))]+ species, that is, the Cu complex possessing an empty coordination site. In contrast, the formation of [Cu(II)(TPA(H))(O2-)]+ in EtCN is found to be initiated from the [Cu(I)(TPA(H))(EtCN)]+ species, that is, one solvent molecule being coordinated to Cu(I). In general, good agreement is found between theoretical and experimental results. The high accuracy of the B3LYP functional in reproducing experimental thermodynamic data for the present type of transition metal complexes is demonstrated by the fact that the differences between measured and computed thermodynamic parameters (DeltaG degree, DeltaH degrees , and -TDeltaS degree, in most cases are less than 2.0 kcal mol(-1). An attempt was made to investigate the kinetics of the formation of [Cu(II)(TPA(H))(O2-)]+ in THF and EtCN. Computed free energies of activation, DeltaG, are in good agreement with experimental results. However, an analysis of the partitioning of the free energy barriers in enthalpic and entropic contributions indicates that the computationally studied reaction pathway might differ from the one observed experimentally.  相似文献   

8.
The crystal structures of [Mn(bpa)2](ClO4)2 (1), [bpa?=?bis(2-pyridylmethyl)amine], and Mn(6-Mebpa)2(ClO4)2 (2), [6-Mebpa?=?(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine] have been determined. In 1, two facial [Mn(bpa)2]2+ isomers are observed in the same unit cell, one with C i (1a) and the other with C2 (1b) symmetries. In 2, only the isomer with C2 symmetry is observed. The structure of [Mn(bpa)2]2+ with only C2 symmetry has been reported previously (Inorg. Chem., 31, 4611 (1992)). The bond length order Mn–Namine?>?Mn–Npyridyl, observed in the C2 and the C i isomers in the crystals of 1, is the reverse of the order observed in the structure of [Mn(bpa)2](ClO4)2 which contains only the C2 isomer in the unit cell. The structure of 2 in which only the C2 isomer is found, also shows the bond length order Mn–Npyridyl?>?Mn–Namine. In cyclic voltammetric experiments in acetonitrile solutions, 1 and 2 show irreversible anodic peaks at E p?=?1.60 and 1.90?V respectively, (vs. Ag/AgCl), assigned to the oxidation of Mn(II) to Mn(III). The substantially higher oxidation potential of 2 is attributable to a higher rearrangement energy in complex 2 due to the steric effect of the methyl substituent.  相似文献   

9.
SynthesisandCrystalStructureofCd(tla)(NO_3)_2[TLA=tris(6-methyl-2-pyridylmethyl)amine]BUXian-He;ZHANGZhi-Hui;ZHUZhi-Ang;CHENYu...  相似文献   

10.
Treatment of [Fe(IV)(O)(TPA)(NCMe)](CF3SO3)2 [TPA, N,N,N-tris(2-pyridylmethyl)amine] with 3 equiv of NR4X (X = CF3CO2, Cl, or Br) in MeCN at -40 degrees C affords a series of metastable [Fe(IV)(O)(TPA)(X)]+ complexes. Some characteristic features of the S = 1 oxoiron(IV) unit are quite insensitive to the ligand substitution in the equatorial plane, namely, the Fe-O distances (1.65-1.66 A), the energy ( approximately 7114.5 eV) and intensity [25(2) units] of the 1s-to-3d transition in the X-ray absorption spectra, and the M?ssbauer isomer shifts (0.01-0.06 mm.s(-1)) and quadrupole splittings (0.92-0.95 mm.s(-1)). The coordination of the anionic X ligand, however, is evidenced by red shifts of the characteristic near-IR ligand-field bands (720-800 nm) and spectroscopic observation of the bound anion by (19)F NMR for X = CF3CO2 and by EXAFS analysis for X = Cl (r(Fe-Cl) = 2.29 A) and Br (r(Fe-Br) = 2.43 A). Density functional theory calculations yield M?ssbauer parameters and bond lengths in good agreement with the experimental data and produce excited-state energies that follow the trend observed in the ligand-field bands. Despite mitigating the high effective charge of the iron(IV) center, the substitution of the MeCN ligand with monoanionic ligands X- decreases the thermal stability of [Fe(IV)(O)(TPA)]2+ complexes. These anion-substituted complexes model the cis-X-Fe(IV)=O units proposed in the mechanisms of oxygen-activating nonheme iron enzymes.  相似文献   

11.
Structural, spectroscopic properties on the dinuclear [M(2)(dcpm)(2)(CN)(4)] (M = Pt, 1a; Ni, 2a, dcpm = bis(dicyclohexylphosphino)methane) and [M(2)(dmpm)(2)(CN)(4)] (M = Pt, 1b; Ni, 2b, dmpm = bis(dimethylphosphino)methane) and the mononuclear trans-[M(PCy(3))(2)(CN)(2)] (M = Pt, 3; Ni, 4, PCy(3) = tricyclohexylphosphine) and theoretical investigations on the corresponding model compounds are described. X-ray structural analyses reveal Pt.Pt and Ni.Ni distances of 3.0565(4)/3.189(1) A and 2.957(1)/3.209(8) A for 1a/1b and 2a/2b, respectively. The UV-vis absorption bands at 337 nm (epsilon 2.41 x 10(4) dm(3) mol(-)(1) cm(-)(1)) for 1a and 328 nm (epsilon 2.43 x 10(4) dm(3) mol(-)(1) cm(-)(1)) for 1b in CH(2)Cl(2) are assigned to (1)(5d(sigma) --> 6p(sigma)) electronic transitions originating from Pt(II)-Pt(II) interactions. Resonance Raman spectroscopy of 1a, in which all the Raman intensity appears in the Pt-Pt stretch fundamental (93 cm(-)(1)) and overtone bands, verifies this metal-metal interaction. Complexes 1a and 1b exhibit photoluminescence in the solid state and solution. For the dinuclear nickel(II) complexes 2a and 2b, neither spectroscopic data nor theoretical calculation suggests the presence of Ni(II)-Ni(II) interactions. The intense absorption bands at lambda > 320 nm in the UV-vis spectra of 2a and 2b are tentatively assigned to d --> d transitions.  相似文献   

12.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

13.
The neutral, monocationic, and dicationic linear trinuclear ruthenium compounds [Ru(3)(dpa)(4)(CN)(2)], [Ru(3)(dpa)(4)(CN)(2)][BF(4)], [Ru(3)(dpa)(4)Cl(2)][BF(4)], and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) (dpa=the anion of dipyridylamine) have been synthesized and characterized by various spectroscopic techniques. Cyclic voltammetric and spectroelectrochemical studies on the neutral and oxidized compounds are reported. These compounds undergo three successive metal-centered one-electron-transfer processes. X-ray structural studies reveal a symmetrical Ru(3) unit for these compounds. While the metal--metal bond lengths change only slightly, the metal--axial ligand lengths exhibit a significant decrease upon oxidation of the neutral complex. The electronic configuration of the Ru(3) unit changes as the axial chloride ligands are replaced by the stronger "pi-acid" cyanide axial ligands. Magnetic measurements and (1)H NMR spectra indicate that [Ru(3)(dpa)(4)Cl(2)] and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) are in a spin state of S=0 and [Ru(3)(dpa)(4)Cl(2)][BF(4)], [Ru(3)(dpa)(4)(CN)(2)], and [Ru(3)(dpa)(4)(CN)(2)][BF(4)] are in spin states of S=1/2, 1, and 3/2, respectively. These results are consistent with molecular orbital (MO) calculations.  相似文献   

14.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

15.
The structures and temperature-dependent photoluminescence properties of the one-dimensional compounds [(TPA)(2)Au][Au(CN)(2)], 1, and (TPA)AuCl, 2, are reported. An extended linear chain with weak Au.Au interactions along the c-axis is evident in the structure of 1, and a helical chain with a pitch of 3.271 A is seen for 2. The intrachain Au...Au separation is 3.457(1) and 3.396(2) A in 1 and 2, respectively. As a result of this weak Au...Au interaction, the physical properties of these compounds are anisotropic. Scanning electron microscopy (SEM) studies indicate that single crystals of both compounds are noninsulating. Single crystals of 1 do not luminesce visibly, but grinding the crystals finely initiates a strong green emission under UV irradiation at room temperature. Further interesting optical properties include the dependence of the emission profile of the powder on the exciting wavelength and luminescence thermochromism. When excited at wavelengths < 360 nm, the powder exhibits a blue emission at 425 nm while excitation with longer wavelengths leads to a green emission near 500 nm. While the green emission dominates at ambient temperature, cooling to cryogenic temperatures leads to the dominance of the blue emission. Fibers of 2 are luminescent at 78 K with an emission band centered at 580 nm. Compound 1 crystallizes in the orthorhombic space group Cccm (No. 66), with Z = 2, a = 6.011(1) A, b = 23.877(6) A, c = 6.914(1) A, V = 992.3(3) A(3), and R = 0.0337. Compound 2 crystallizes in the trigonal space group R3 (No. 148), with Z = 18, a = 22.587(2) A, b = 22.587(2) A, c = 9.814(2) A, V = 4336 A(3), and R = 0.0283.  相似文献   

16.
17.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

18.
19.
Two new cobalt(III) complexes of the Schiff base N,N′-disalicylidene-1,2-phenylendiimine dianion (salophen), trans- [CoIII(salophen)(ta)2]ClO4, (ta = thioacetamide) (1) and trans-[CoIII(salophen)(tb)2]ClO4, (tb = thiobenzamide) (2) were synthesized and characterized using single-crystal X-ray diffraction and spectroscopic techniques. Both complexes show solvatochromism in a variety of solvents. Complex (1) crystallized from CHCl3 as a solvate of orthorhombic symmetry, space group Pca21 with a = 17.3480(10) Å, b = 18.7522(10) Å, c = 18.8128(11) Å, α = β = γ = 90°, and Z = 8. The cobalt(III) center lies in a distorted octahedral environment. The crystal structure of (1) consists of two independent [CoIII(salophen)(ta)2]+ cations and ClO4 - anions held together essentially via hydrogen bonds and π-π stacking interactions. Complex (2), forming also a CHCl3 solvate, crystallized in the monoclinic space group P21/n with a = 14.710(3) Å, b = 13.506(3) Å, c = 18.595(4) Å, β = 100.295(4)°, and Z = 4. The geometry around cobalt(III) center is a distorted octahedron. The crystal structure of (2) contains a [CoIII(salophen)(tb)2]+ complex with a remarkably twisted salophen ligand. Both complexes, (1) and (2), contain approximately one disordered CHCl3 molecule per Co in the solid state.  相似文献   

20.
The synthesis, crystal structure, and physical characterization of the coordination compounds [Ni(en)2]4[Fe(CN)5NO]2[Fe(CN)6]x5H2O (1), [Ni(en)2][Fe(CN)5NO]x3H2O (2), [Mn(3-MeOsalen)(H2O)]2[Fe(CN)5NO] (3), and [Mn(5-Brsalen)]2[Fe(CN)5NO] (4) are presented. 1 crystallizes in the monoclinic space group P2(1)/n (a = 7.407(4) A, b = 28.963(6) A, c = 14.744(5) A, alpha = 90 degrees, beta = 103.26(4) degrees, gamma = 90 degrees, Z = 2). Its structure consists of branched linear chains formed by cis-[Ni(en)2]2+ cations and ferrocyanide and nitroprusside anions. The presence of two kinds of iron(II) sites has been demonstrated by M?ssbauer spectroscopy. 2 crystallizes in the monoclinic space group P2(1)/c (a = 11.076(3) A, b = 10.983(2) A, c = 17.018(5) A, alpha = 90 degrees, beta = 107.25(2) degrees, gamma = 90 degrees, Z = 4). Its structure consists of zigzag chains formed by an alternated array of cis-[Ni(en)2]2+ cations and nitroprusside anions. 3 crystallizes in the triclinic space group P1 (a = 8.896(5) A, b = 10.430(5) A, c = 12.699(5) A, alpha = 71.110(5) degrees, beta = 79.990(5) degrees, gamma = 89.470(5) degrees, Z = 1). Its structure comprises neutral trinuclear bimetallic complexes in which a central [Fe(CN)5NO]2- anion is linked to two [Mn(3-MeOsalen)]+ cations. 4 crystallizes in the tetragonal space group P4/ncc (a = 13.630(5) A, c = 21.420(8) A, Z = 4). Its structure shows an extended 2D neutral network formed by cyclic octameric [-Mn-NC-Fe-CN-]4 units. The magnetic properties of these compounds indicate the presence of quasi-isolated paramagnetic Ni2+ and Mn3+. Irradiated samples of the four compounds have been studied by differential scanning calorimetry to detect the existence of the long-lived metastable states of nitroprusside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号