首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data are presented from studies of the structure and bond type of carbon atoms in amorphous carbon-nickel films deposited from pulsed vacuum-arc discharge plasma sources. X-ray photoelectron spectroscopy was used. The characteristics of the plasmon loss spectra depend significantly on the deposition parameters. Carbon exists in a mixed sp2+sp3 hybridized state in the carbon–nickel films. The ratio of sp3/sp2 carbon bonds increases when the nickel content is reduced (from 5.5 to 1.0 atomic %) and the deposition angle is increased. The structure closest to that of diamond was with a substrate bias voltage of –80 to –100 V and a deposition angle of 90°.  相似文献   

2.
Thermal oxidation of detonation nanodiamond   总被引:1,自引:0,他引:1  
In this work the results of investigation of detonation ultradispersed diamond (UDD) powder by means of thermogravimetric analysis (TGA) and Raman scattering (RS) are presented. Using the TGA method the temperature regions corresponding to the oxidation of different carbon fractions included in the composition of UDD powder were determined. In particular, it was established that heat treatment in the air at a temperature not exceeding 550°C leads to the oxidation and removal of nondiamond carbon, while the diamond part of the UDD remains unchanged. The form of the diamond RS band in the spectra of the UDD powder oxidized at 550°C shows good agreement with the model of phonon confinement. Based on the comparison of the results of experimental data and theoretical calculations for the RS band forms the size of the UDD crystal grains was defined as 4–5 nm.  相似文献   

3.
Fe-doped hydrogenated amorphous carbon (a-C:H:Fe) films were deposited from a gas mixture of trans-2-butene/ferrocene/H2 by plasma enhanced metal organic chemical vapor deposition. X-ray photoelectron spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition and the bonding structure of the a-C:H:Fe and a-C:H films. Optical properties were investigated by the UV–visible spectroscopy and the photoluminescence (PL) spectra. The Fe-doped films contain more aromatic structures and C=C bonds than the undoped films. The sp 2 carbon content and sp 2 clustering of the films increase, and aromatic-like rings’ structures become richer after Fe-doping. The Tauc optical gap of the a-C:H:Fe films become narrower by 0.3 eV relative to the value of the a-C:H films. The PL peak shifts from 2.35 eV of the a-C:H films to 1.95 eV of the a-C:H:Fe films, and the PL intensity of the a-C:H:Fe films is greatly enhanced. A deep level emission peak around 2.04 eV of the a-C:H:Fe films is observed.  相似文献   

4.
We have used Raman scattering, elemental analysis, and structural analysis to study the effect of the concentration of incorporated metals (Cu, Ni) on the ratio of sp2/sp3 carbon bonds in composite hydrogen-containing films a-C:H/Cu and a-C:H/Ni, formed by combining plasma-enhanced vapor phase deposition of carbon and sputtering of the metal, using a mixture of argon and methane or acetylene gases. We have shown that formation of a nanosized structure of metallic crystallites (2–5 nm) in the composite films leads to a significant increase in the fraction of disordered sp3-bonded carbon clusters and a decrease in the linear dimensions of the graphite-like carbon clusters. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 344–348, May–June, 2006.  相似文献   

5.
Glassy carbon (GC) was implanted by 150 keV Co+ ions to the doses of 1×1016 (low dose) and 1×1017 ions/cm2 (high dose). The low dose implantation results in GC structure disordering with formation of amorphous carbon (a-C). Analysis of Rutherford backscattering (RBS) and Raman spectra has revealed 15 at.% of sp3-bonded C atoms in the a-C structure. The in-pane size of sp2 clusters was estimated to be 1.1 nm. On the contrary, the high dose ion implantation results in ordering of the a-C structure. Content of the sp3 atoms in a-C was reduced to about 5% and, respectively, the in-plane sp2 cluster size was increased up to 2.8 nm. Together with the a-C structure ordering the Raman spectra identifies formation of transpolyacetylene (TPA)-like chains after the high-dose Co+ implantation. In parallel, RBS suggests an enhanced diffusion of the implanted cobalt within the modified carbon layer. Correlation of the RBS and Raman results argues a driving role of cobalt diffusion in the TPA-like chains formation and a-C ordering. Great surface roughening observed after the high dose Co+ implantation suggests also the pronounced cobalt clustering causing large flux of “free volume” to the surface.  相似文献   

6.
We have used Raman light scattering and electron paramagnetic resonance methods to study carbon films obtained by laser plasma deposition, using different types of graphite targets. We have established that the films deposited in this way have a diamond-like structure and are a nanostructured composite containing clusters of both sp2 and sp3-hybridized carbon. We have shown that an increase in structural perfection of the graphite target causes an improvement in the structure of the carbon films obtained from it and an increase in the content of sp3-hybridized carbon in it. Thermal stimulation of the substrate during application of a coating leads to the same effect. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 4, pp. 539–546, July–August, 2008.  相似文献   

7.
Ultraviolet (UV) and visible Raman spectroscopy were used to study a-C:H:N films deposited using ECR-CVD with a mixed gas of CH4 and N2. Small percentage of nitrogen from 0 to 15% is selected. Raman spectra show that CN bonds can be directly observed at 2220 cm−1 from the spectra of visible and UV Raman. UV Raman enhances the sp1 CN peak than visible Raman. In addition, the UV Raman spectra can reveal the presence of the sp3 sites. For a direct correlation of the Raman parameter with the N content, we introduced the G peak dispersion by combining the visible and UV Raman. The G peak dispersion is directly relative to the disorder of the sp2 sites. It shows the a-C:H:N films with higher N content will induce more ordered sp2 sites. In addition, upper shift of T position at 244 nm excitation with the high N content shows the increment of sp2 fraction of films. That means the films with high N content will become soft and contain less internal stress. Hardness test of films also confirmed that more N content is with less hardness.  相似文献   

8.
Carbon nitride films were deposited by pulsed laser ablation of a graphite target under a nitrogen atmosphere at room temperature. A direct current discharge apparatus was used to supply active nitrogen species during the deposition of carbon nitride films. The composition and bonding structure of carbon nitride films were determined by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy. The incorporation of nitrogen atoms in the films is greatly improved by the using of a dc glow discharge. The ratio N/C can reach 0.34 at the discharge voltage of 400 V. Six peaks centered at 1025 cm-1, 1226 cm-1, 1381 cm-1, 1534 cm-1, 1629 cm-1, and 2200 cm-1 can be clearly distinguished from the FTIR spectra of the deposited films, which indicates the existence of C–N, C=N, and C≡N bonds. The fraction of sp2 C, C≡N bonds, and C=N bonds in the deposited films increases with increasing discharge voltage. Deconvolution results of C 1s and N 1s spectra also indicate that nitrogen atoms in the films are chemically bonded to sp1 C, sp2 C, and sp3 C atoms. Most of the nitrogen atoms are bonded to sp2 C atoms. Increasing the discharge voltage leads to a decrease of the fraction of nitrogen atoms bonded to sp2 C and the fraction of amorphous carbon; however, it leads to an increase of the fraction of nitrogen atoms bonded to sp3 C and the fraction of sp2 C and sp3 C atoms bonded to nitrogen atoms. Received: 7 June 2000 / Accepted: 19 February 2001 / Published online: 27 June 2001  相似文献   

9.
Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy.The Raman spectroscopy results showed a decreasing sp3 fraction (an increasing trend in ID/IG ratio) with increasing argon flow from 0 to 13 sccm. The sp3:sp2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp3:sp2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.  相似文献   

10.
Optical properties of porous graphite samples prepared by electrochemical etching were investigated. It is found that electrochemical etching modifies their Raman spectra and gives rise to photoluminescence. The evolution of Raman spectra at the initial etching stages is studied in detail. A model is proposed explaining the salient features of the observed Raman spectra. It assumes the appearance of graphite nanoparticles and the formation of sp 3 bonds between the graphite planes at the nanocrystal boundaries.  相似文献   

11.
Structure in the Raman scattering spectra of near-surface n-GaAs layers (n=2×1018 cm−3) implanted with 100 keV B+ ions in the dose range 3.1×1011–1.2×1014 cm−2 is investigated. The qualitative and quantitative data on the carrier density and mobility and on the degree of amorphization of the crystal lattice and the parameters of the nanocrystalline phase as a result of ion implantation are obtained using a method proposed for analyzing room-temperature Raman spectra. Fiz. Tverd. Tela (St. Petersburg) 41, 1495–1498 (August 1999)  相似文献   

12.
With phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films prepared using filtered cathodic vacuum arc technique with PH3 as the dopant source, we investigate the effect of phosphorus content on the structural properties of the films by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. XPS analysis indicates that a function is established between the atomic fraction of phosphorus in the samples and the flow rate of PH3 during deposition, and that phosphorus implantation increases the graphite-like trihedral sp2 bonds deduced from fitted C 1s and P 2p core level spectra. Raman spectra of a broad range show that there are two notable features for all ta-C:P films: the first-order band centered at about 1560 cm-1 and the second-order band between 2400 and 3400 cm-1. The broad first-order band demonstrates that the amorphous structure of all samples does not remarkably change when a lower flow rate of PH3 is implanted, while a higher concentration of phosphorus impurity enhances the clustering of sp2 sites dispersed in sp3 skeleton and the evolution of structural ordering. Furthermore, the second-order Raman spectra confirm the formation of small graphitic crystallites in size due to a finite-crystal-size effect. PACS 81.05.Uw; 81.15.Ef; 63.50.+x  相似文献   

13.
Raman spectroscopy is widely used for the characterization of bonding type in carbon‐based materials, including carbonized surface layer in ion‐implanted polymers. Studies of the polarization properties of Raman scattering from amorphous carbonaceous materials, however, are very scarce. In this paper, we investigate the polarized Raman spectra of polymethylmethacrylate (PMMA) implanted with 50‐keV Si+ ions at fluences in the range 3.2 × 1014–1.0 × 1017 ions/cm2 and for different visible excitation wavelengths. The spectra of the implanted samples are dominated by the D‐ and G‐bands of sp2 carbon, which evidence strong carbonization of the ion‐modified layer. The multiwavelength excitation allowed us to resonantly probe the depolarization ratios for sp2 clusters of different sizes. We established that the depolarization ratio ρG of the G‐band correlates with the sp2 cluster size approaching the random orientation limit of 0.75 for the smallest clusters and a limiting value of 0.41 for the largest clusters. The experimental findings give evidence for a preferable orientation of the larger size clusters with their hexagonal planes perpendicular to the surface of the sample. A plausible explanation for such an arrangement is that the sp2 clusters form tile‐like arrangements along the ion tracks. This finding may give clues for understanding of the strong transconductance of the ion‐modified layer, and open prospects for the application of polarized Raman spectroscopy as a characterization tool for surface morphology in ion‐implanted materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Carbon nitride thin films deposited by dc unbalanced magnetron sputtering have been analyzed by high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS data show that N 1s binding states depend on substrate temperature (Ts). By comparison with the Raman spectra, N 1s binding states are assigned in which nitrogen atoms are mainly bound to sp2 and sp3 carbon atoms at Ts = 100°C, whereas at Ts = 500°C nitrogen atoms are mainly bonded to sp2, sp3 and sp1 carbon atoms.  相似文献   

15.
A systematic study of the chemical bonding in hydrogenated amorphous germanium–carbon (a-Ge1-xCx:H)alloys using X-ray photoelectron spectroscopy (XPS) is presented. The films, with carbon content ranging from 0 at. % to 100 at. %, were prepared by the rf co-sputtering technique. Raman spectroscopy was used to investigate the carbon hybridization. Rutherford backscattering spectroscopy (RBS) and XPS were used to determine the film stoichiometry. The Ge 3d and C 1s core levels were used for investigating the bonding properties of germanium and carbon atoms, respectively. The relative concentrations of C–Ge, C–C, and C–H bonds were calculated using the intensities of the chemically shifted C 1s components. It was observed that the carbon atoms enter the germanium network with different hybridization, which depends on the carbon concentration. For concentrations lower than 20 at. %, the carbon atoms are preferentially sp3 hybridized, and approximately randomly distributed. As the carbon content increases the concentration of sp2 sites also increases and the films are more graphitic-like. Received: 4 May 1999 / Accepted: 24 November 1999 / Published online: 24 March 2000  相似文献   

16.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we report on the bulk modifications of type IIa single-crystal diamond with visible 10-ps pulses (at λ = 532 nm) and microstructural changes characterized by the appearance of several ‘unidentifiable’ vibrational modes in the frequency range of 1000–1400 cm?1 in the Raman spectra of laser-modified diamond. It is found that the new Raman modes are strongly pronounced in the spectra of high-stress regions in immediate proximity to the bulk microstructures in the absence of the G mode at ~1580 cm?1 characteristic of the sp2 phase. The high internal stresses are determined from the splitting of the triply degenerate diamond Raman line. The revealed structure transformation is localized within a narrow bulk layer near the bulk microstructures formed, and the stress relaxation is found to result in disappearance of the detected vibrational modes in the spectra. It is suggested that the formation of bulk regions with a sp3 carbon structure consisting of Z-carbon and hexagonal diamond is responsible for the appearance of new Raman modes in the spectra of laser-modified diamond. These findings evidence that the stress-assisted formation of novel metastable carbon phases or defect structures occur in the course of bulk modification of diamond with ps-laser pulses. In addition, we report the results of simulations of internal stresses in the system ‘graphitized cylinder-in-diamond’ to show (1) the effect of the mechanical properties of laser-modified diamond on the resulting stresses and (2) formation of bulk microscopic regions with high stresses of >10 GPa, i.e., the conditions at which various sp3 carbon allotropes and defect structures become more stable than graphite.  相似文献   

18.
类金刚石膜不同能量下的离子注入   总被引:3,自引:0,他引:3       下载免费PDF全文
本文对等离子体气相沉积法制备的类金刚石膜(a-C:H)进行了离子注入研究。注入剂量固定为5×105Ar/cm2,注入能量分别为50,100,140和180keV。离子注入前后分别作了红外吸收谱,Raman谱,光学能隙,氢含量和电阻率的测量。结果表明,注入离子破坏了膜中的C—H键,sp2和sp3态都减少,而(sp2/sp3)比值增大;光学能隙Eopt,电阻 关键词:  相似文献   

19.
The Raman spectra of n‐pentyl methyl ether, C5H11OCH3, and six selectively deuteriated analogues are reported and discussed. Correlations between the observed ν(sp3CH) stretching and bending bands and the position of the deuterium atoms in the alkyl chain are developed and refined. Similar progress is possible in associating specific skeletal vibrations with bands in the Raman spectra. The relevance of this study to improving the assignment of bands in the Raman spectra of larger systems of biological interest is highlighted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Surface-enhanced Raman scattering (SERS) spectra of 2-cyanopyridine (2 CP) adsorbed on silver colloidal particles have been investigated. The prominent SERS bands are observed at 556, 612, 778, 1002, 1060, 1072, 1150 and 1240 cm−1. The absolute enhancement factor of the Raman signals in SERS studies has been estimated to be of the order of 102–105 for various bands. The 2CP molecules have been ascribed to adsorb on colloidal particles in standing up fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号