首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Treatment of the octahedral Ru(II)-dimethyl sulfoxide complexes trans-RuCl(2)(dmso-S)(4) (1), trans-RuCl(2)(dmso-O)(2)(CO)(2) (2), and trans-RuCl(2)(dmso)(3)(CO) (3) with a stoichiometric amount of 5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin (4'-cis-DPyP) yields, after chromatographic purification, the novel 2+2 molecular squares of formula [trans,cis,cis-RuCl(2)(dmso-S)(2)(4'-cis-DPyP)](2) (4), [trans,cis,cis-RuCl(2)(CO)(2)(4'-cis-DPyP)](2) (5), and [trans,cis,cis-RuCl(2)(dmso-S)(CO)(4'-cis-DPyP)](2) (6), respectively. Compound 6 exists as an equimolar mixture of the isomeric metallacycles 6a and 6b, depending on whether the 4'-N(py) rings of 4'-cis-DPyP's are trans to CO or to dmso-S. Compounds 4-6 were fully characterized by NMR and IR spectroscopy and by FAB mass spectrometry. Treatment of 5 with excess zinc acetate in chloroform/methanol mixtures led to the isolation of the corresponding zinc adduct [trans,cis,cis-RuCl(2)(CO)(2)(Zn x 4'-cis-DPyP)](2) (5Zn). Treatment of 5Zn with 1 equiv of a trans ditopic N-donor ligand L (L = 4,4'-bipy, 5,15-bis(4'-pyridyl)-2,8,12,18-tetra-n-propyl-3,7,13,17-tetramethylporphyrin (4'-trans-DPyP-npm), or 5,15-bis(4'-pyridyl)-10,20-diphenylporphyrin (4'-trans-DPyP)) leads readily and selectively, according to (1)H NMR spectroscopy, to the quantitative assembling of 2:2 supramolecular adducts of stacked metallacycles of formula [(5Zn)(2)(mu-L)(2)] (7-9), which were thoroughly characterized in solution by NMR spectroscopy. NMR features indicate that, at ambient temperature, the equilibrium between 5Zn and L to yield [(5Zn)(2)(mu-L)(2)] has an intermediate to slow rate on the NMR time scale (relatively broad signals for L) and is totally shifted toward the 2:2 product (all or nothing process). Single-crystal X-ray investigations showed that, depending on the nature of the bridging ligand, in the solid state these sandwich structures can either be maintained or originate polymeric chains formulated as [(5Zn)(mu-L)](infinity). When L = 4'-trans-DPyP, both solution- and solid-state data indicate that [(5Zn)(2)(mu-4'-trans-DPyP)(2)] (9) is a discrete supramolecular assembly of two molecular squares of metalloporphyrins axially connected through other porphyrins. In this molecular box, the two bridging porphyrins are coplanar at a distance of about 11.4 A. When L = 4,4'-bipy, the corresponding adduct 7 has the anticipated sandwich-like discrete architecture [(5Zn)(2)(mu-4,4'-bipy)(2)] in solution, but it assumes a stair-like polymeric wire structure in the solid state. The polymer [(5Zn)(mu-4,4'-bipy)](infinity) is made by 5Zn squares bridged by 4,4'-bipy ligands which are axially coordinated alternatively on the two opposite sides of each square. Our work clearly established that relatively simple supramolecular adducts of porphyrins, such as molecular squares, are suitable building blocks for the construction of more elaborate assemblies of higher order by axial coordination of bridging ligands.  相似文献   

2.
The Ru(II) complex fac-[RuCl(dmso-S)(3)(dmso-O)(2)][PF(6)] (P2) was found to be an excellent precursor for the facile preparation in high yield of half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N)(2)][PF(6)] (e.g. (N)(2) = 1,2-diaminoethane (en, 4), trans-1,2-diaminocyclohexane (dach, 5), or 2 NH(3) (6)). Neutral half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N-O)] where N-O is an anionic chelating ligand (e.g. N-O = picolinate (pic, 7)) are best prepared from the universal Ru(II)-dmso precursor cis-[RuCl(2)(dmso)(4)] (P1). These complexes, that were fully characterized in solution and in the solid state, are structurally similar to the anticancer organometallic compounds [Ru(η(6)-arene)(chel)Cl][PF(6)](n) but, in place of a face-capping arene, have the fac-Ru(dmso-S)(3) fragment. In contrast to what observed for the corresponding arene compounds, that rapidly hydrolyze the Cl ligand upon dissolution in water, compounds 4-6 are very stable and inert in aqueous solution. Probably their inertness is the reason why they showed no significant cytotoxicity against the MDA-MB-231 cancer cell line.  相似文献   

3.
With the aim of further developing the structure-activity relationship in biologically active half-sandwich Ru(ii)-[9]aneS(3) complexes ([9]aneS(3)=1,4,7-trithiacyclononane), a series of new mono- and dinuclear complexes bearing the chelating dicarboxylate ligands oxalate (ox), malonate (mal) and methylmalonate (mmal), have been synthesized and studied. Treatment of the precursor [Ru([9]aneS(3))(dmso)(3)][CF(3)SO(3)](2) (7) with equivalent amounts of K(2)(dicarb) afforded the corresponding neutral complexes with the general formula [Ru([9]aneS(3))(dmso-S)(eta(2)-dicarb)] (where dicarb=ox (1), mal (2) and mmal (3)), while using half an equivalent of K(2)(ox), the symmetric dimer [{Ru([9]aneS(3))(dmso-S)}(2)(mu-eta(4)-ox)][CF(3)SO(3)](2) (4) was isolated. The reaction of with the oxalato complex fac-[Ru(dmso-S)(3)(dmso-O)(eta(2)-ox)] (9) yielded two asymmetric dimers, namely [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(CF(3)SO(3))}][CF(3)SO(3)] (5) and [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(dmso-O)}][CF(3)SO(3)](2) (6), depending on the reaction conditions. All new complexes were structurally characterized, both in solution (by NMR spectroscopy) and in the solid state (by X-ray crystallography). The chemical behavior of the complexes in aqueous solution was studied by UV-Vis and NMR spectroscopy in view of their potential antitumor activity: the monomers partially release a dmso ligand to yield the monofunctional aqua adduct [Ru([9]aneS(3))(eta(2)-dicarb)(H(2)O)], while the dimers rapidly open up the oxalato bridge to give two mononuclear fragments. Splitting of the asymmetric dimers 5 and 6 occurs selectively and the ox moiety remains bonded to the fac-Ru(dmso-S)(3) fragment. A detailed comparison of the structural and chemical features of 1-6 with those of similar dicarboxylate complexes possessing the fac-Ru(dmso-S)(3) fragment in place of Ru([9]aneS(3)) allows us to draw a number of general conclusions on the binding preferences of dicarb ligands on the octahedral Ru(II) center.  相似文献   

4.
Two ruthenium nitrosyl porphyrins have been synthesized and characterized by spectroscopic and electrochemical methods. The investigated compounds are represented as [(TPP)Ru(NO)(H(2)O)]BF(4) and (TPP)Ru(NO)(ONO) where TPP is the dianion of 5,10,15,20-tetraphenylporphyrin. (TPP)Ru(NO)(ONO) crystallizes in the tetragonal space group I4, with a = 13.660(1) ?, c = 9.747(1) ?, V = 1818.7(3) ?(3), and Z = 2, 233 K. The most chemically interesting feature of the structure is that the nitrosyl and O-bound nitrito groups are located axial and trans to one another. Both complexes undergo an irreversible reduction at the metal center which is accompanied by dissociation of the axial ligand trans to NO. The addition of 1-10 equiv of pyridine to [(TPP)Ru(NO)(H(2)O)]BF(4) in CH(2)Cl(2) containing 0.1 M TBAP leads to the formation of [(TPP)Ru(NO)(py)](+), a species which is reversibly reduced at E(1/2) = -0.29 V. The electrochemical data indicate that (TPP)Ru(NO)(ONO) can also be converted to [(TPP)Ru(NO)(py)](+) in CH(2)Cl(2) solutions containing pyridine but only under specific experimental conditions. This reaction does not involve a simple displacement of the ONO(-) axial ligand from (TPP)Ru(NO)(ONO) but occurs after reduction of (TPP)Ru(NO)(ONO) to (TPP)Ru(NO)(py) followed by reoxidation to [(TPP)Ru(NO)(py)](+).  相似文献   

5.
Reaction of the antitumor complex trans-[Ru(III)Cl4(Hind)2]- (Hind = indazole) with an excess of dimethyl sulfoxide (dmso) in acetone afforded the complex trans,trans,trans-[Ru(II)Cl2(dmso)2(Hind)2] (1). Two other isomeric compounds trans,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (2) and cis,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (3) have been obtained on refluxing cis-[Ru(II)Cl(2)(dmso)(4)] with 2 equiv. of indazole in ethanol and methanol, respectively. Isomers 1 and 2 react with acetonitrile yielding the complexes trans-[Ru(II)Cl2(dmso)(Hind){HN=C(Me)ind}].CH3CN (4.CH3CN) and trans,cis-[Ru(II)Cl2(dmso)2{HN=C(Me)ind}].H2O (5.H2O), respectively, containing a cyclic amidine ligand resulting from insertion of the acetonitrile C triple bond N group in the N1-H bond of the N2-coordinated indazole ligand in the nomenclature used for 1H-indazole. These are the first examples of the metal-assisted iminoacylation of indazole. The products isolated have been characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, electrospray mass-spectrometry, thermogravimetry, differential scanning calorimetry, 1H NMR spectroscopy, and solid-state 13C CP MAS NMR spectroscopy. The isomeric structures of 1-3 and the presence of a chelating amidine ligand in 4 and 5 have been confirmed by X-ray crystallography. The electrochemical behavior of 1-5 and the formation of 5 have been studied by cyclic voltammetry.  相似文献   

6.
The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first. Uniquely, [(o-O2C6Cl4){(PhO)3P}(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- is oxidised first at the N-bound fragment, indicating that it is possible to control the site of electron transfer by tuning the co-ligands. Crystallisation of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2{P(OPh)3}(o-O2C6Cl4)] resulted in the formation of an isomer in which the P(OPh)3 ligand is cis to the cyanide bridge, contrasting with the trans arrangement of the X-Ru-L fragment in all other complexes of the type RuX(CO)2L(o-O2C6Cl4).  相似文献   

7.
The stepwise coordination of meso-4'-pyridyl/phenyl porphyrins (4'-PyPs) to different metal centers proved to be an efficient synthetic approach leading to unsymmetrical arrays containing porphyrins and coordination compounds. The first step of this process, treatment of 4'-PyPs with a less than stoichiometric amount of cis,fac-RuCl2(Me2-SO)3(CO) (1), leads to the selective coordination of [cis,cis,cis-RuCl2(Me2SO)2(CO)] fragments ([Ru]) to some of the peripheral 4'-N sites of the 4'-PyPs. Column separation afforded four partially ruthenated 4'-PyPs in pure form: 4'-cis-DPyP[Ru] (2), 4'-trans-DPyP[Ru] (3), (4'-TPyP)[Ru] (4), and (4'-TPyP)[Ru]3 (5). These compounds, which have residual unbound peripheral 4'-N(py) sites (either one or three), were allowed to react with other metal centers that may belong either to a metalloporphyrin or to a coordination compound. When building blocks 2-5 were treated with [Ru(TPP)(CO)(EtOH)] (TPP = meso-tetraphenylporphyrin) in chloroform at room temperature, axial coordination of Ru(TPP)(CO) units ((Ru)) to the available 4'-N(py) sites readily occurred, generating the following arrays containing both perpendicular porphyrins and coordination compounds: (Ru)-(mu-4'-cis-DPyP)[Ru], (Ru)(mu-4'-trans-DPyP)[Ru], (Ru)3(mu-4'-TPyP)[Ru], and (Ru)(mu-4'-TPyP)[Ru]3. Furthermore, building blocks 2, 3, and 5 were treated with a series of coordination compounds capable of binding two pyridylporphyrins either cis to each other (trans-RuCl2(Me2SO)4 and trans,cis,cis-RuCl2(Me2SO)2(CO)2) or trans to each other (trans-PdCl2(C6H5CN)2). Homo- (Ru) and heterobimetallic (Ru-Pd) arrays with as many as seven metal atoms (six Ru and one Pd) and two 4'-PyPs were obtained as follows: trans,cis,cis-RuCl2(Me2SO)2(4'-cis-DPyP[Ru])2, trans,cis,cis-RuCl2(Me2SO)2(4'-trans-DPyP[Ru])2, trans,cis,cis-RuCl2(CO)2(4'-cis-DPyP[Ru])2, and trans-PdCl2(4'-TPyP[Ru]3)2. All the products were thoroughly characterized by 1H NMR spectroscopy. Since the [Ru] fragment is chiral, diastereomers are formed when two or more [Ru] units are bound to a porphyrin. We found that when two 4'-cis-DPyP[Ru] (2) units are coordinated cis to each other on the same metal center, the mutual anisotropic effect of the cis porphyrins differentiates the sulfoxide methyl resonances for the two forms. These and other results indicate that the pyridyl units react independently of the presence or absence of a substituent on the other py rings. Thus, the synthetic strategy should be a general method for linking diverse metal centers through pyridylporphyrins.  相似文献   

8.
The electrochemical behavior of [trans-RuCl(4)L(DMSO)](-) (A) and [trans-RuCl(4)L(2)](-) (B) [L = imidazole (Him), 1,2,4-triazole (Htrz), and indazole (Hind)] complexes has been studied in DMF, DMSO, and aqueous media by cyclic voltammetry and controlled potential electrolysis. They exhibit one single-electron Ru(III)/Ru(II) reduction involving, at a sufficiently long time scale, metal dechlorination on solvolysis, as well as, in organic media, one single-electron reversible Ru(III)/Ru(IV) oxidation. The redox potential values are interpreted on the basis of the Lever's parametrization method, and particular forms of this linear expression (that relates the redox potential with the ligand E(L) parameter) are proposed, for the first time, for negatively (1-) charged complexes with the Ru(III/II) redox couple center in aqueous phosphate buffer (pH 7) medium and for complexes with the Ru(III/IV) couple in organic media. The E(L) parameter was estimated for indazole showing that this ligand behaves as a weaker net electron donor than imidazole or triazole. The kinetics of the reductively induced stepwise replacement of chloride by DMF were studied by digital simulation of the cyclic voltammograms, and the obtained rate constants were shown to increase with the net electron donor character (decrease of E(L)) of the neutral ligands (DMSO < indazole < triazole < imidazole) and with the basicity of the ligated azole, factors that destabilize the Ru(II) relative to the Ru(III) form of the complexes. The synthesis and characterization of some novel complexes of the A and B series are also reported, including the X-ray structural analyses of (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(DMSO)], [(Ph(3)P)(2)N][trans-RuCl(4)(Htrz)(DMSO)], (H(2)ind)[trans-RuCl(4)(Hind)(DMSO)], and [(Hind)(2)H][trans-RuCl(4)(Hind)(2)].  相似文献   

9.
The 1,4-disubstituted 1,2,3-triazole ligand prepared by click chemistry 1-(2-picolyl)-4-phenyl-1H-1,2,3-triazole (ppt) was investigated as novel chelating ligand for Ru(II) complexes with potential antitumor activity. The preparation and structural characterization, mainly by NMR spectroscopy in solution and by X-ray crystallography in the solid state, of four new Ru(II) complexes is reported: two isomeric Ru-dmso compounds, trans,cis-[RuCl(2)(dmso-S)(2)(ppt)] (1) and cis,cis-[RuCl(2)(dmso-S)(2)(ppt)] (2), and two half-sandwich Ru-[9]aneS(3) coordination compounds, [Ru([9]aneS(3))(dmso-S)(ppt)][CF(3)SO(3)](2) (3) and [Ru([9]aneS(3))Cl(ppt)][CF(3)SO(3)] (4). In all compounds ppt firmly binds to ruthenium in a bidentate fashion through the pyridyl nitrogen atom and the triazole N2, thus forming a puckered six-membered ring. The chemical behavior in aqueous solution of the water-soluble complexes 3 and 4 was studied by UV-Vis and NMR spectroscopy and compared to that of the previously described organometallic analogue [Ru(η(6)-p-cymene)Cl(ppt)][Cl] (5) in view of their potential antitumor activity. Compounds 3-5 were tested also in vitro for cytotoxic activity against two human cancer cell lines, one sensitive and one resistant to cisplatin, in comparison with cisplatin. Compound 4, the one that aquates faster, was found to be more cytotoxic than cisplatin against human lung squamose carcinoma cell line (A-549).  相似文献   

10.
Two isomeric Ru(II) complexes containing the dinucleating Hbpp (3,5-bis(2-pyridyl)pyrazole) ligand together with Cl and dmso ligands have been prepared and their structural, spectroscopic, electrochemical, photochemical, and catalytic properties studied. The crystal structures of trans,cis-[Ru(II)Cl(2)(Hbpp)(dmso)(2)], 2a, and cis(out),cis-[Ru(II)Cl(2)(Hbpp)(dmso)(2)], 2b, have been solved by means of single-crystal X-ray diffraction analysis showing a distorted octahedral geometry for the metal center where the dmso ligands coordinate through their S atom. 1D and 2D NMR spectroscopy corroborates a similar structure in solution for both isomers. Exposure of either 2a or 2b in acetonitrile solution under UV light produces a substitution of one dmso ligand by a solvent molecule generating the same product namely, cis(out)-[Ru(II)Cl(2)(Hbpp)(MeCN)(dmso)], 4. While the 1 e(-) oxidation of 2b or cis(out),cis-[Ru(II)Cl(2)(bpp)(dmso)(2)](+), 3b, generates a stable product, the same process for 2a or trans,cis-[Ru(II)Cl(2)(bpp)(dmso)(2)](+), 3a, produces the interesting linkage isomerization phenomenon where the dmso ligand switches its bond from Ru-S to Ru-O (K(III)(O)(-->)(S) = 0.25 +/- 0.025, k(III)(O)(-->)(S) = 0.017 s(-1), and k(III)(S)(-->)(O) = 0.065 s(-1); K(II)(O)(-->)(S) = 6.45 x 10(9), k(II)(O)(-->)(S) = 0.132 s(-1), k(II)(S)(-->)(O) = 2.1 x 10(-11) s(-1)). Finally complex 3a presents a relatively high activity as hydrogen transfer catalyst, with regard to its ability to transform acetophenone into 2-phenylethyl alcohol using 2-propanol as the source of hydrogen atoms.  相似文献   

11.
An N-Alkyl bipyridinium having a polymethylene chain and a bulky aryl group at the end, [4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2]Cl (Cl), reacts with K[PtCl3(dmso)] to produce the Pt complex with the N-alkyl bipyridinium ligand [Cl2(dmso)Pt{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}][PtCl3(dmso)] as a 6:1 mixture of trans and cis isomers ([trans-][PtCl3(dmso)] and [cis-][PtCl3(dmso)]). Addition of alpha-cyclodextrin (alpha-CD) to a solution of Cl in dmso-d6/D2O (3:1) forms [2]pseudorotaxane [{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}.(alpha-CD)]Cl (Cl) which is equilibrated with Cl and alpha-CD in solution. The reaction of K[PtCl3(dmso)] with Cl affords the [2]rotaxane [trans-Cl2(dmso)Pt{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}.(alpha-CD)][PtCl3(dmso)] ([trans-][PtCl3(dmso)]) which contains alpha-CD and [trans-][PtCl3(dmso)] as the cyclic and axis components, respectively. Dissolution of a mixture of [trans-][PtCl3(dmso)], [cis-][PtCl3(dmso)] and alpha-CD in dmso-d6/D2O (3:1) forms a mixture of the rotaxanes containing [trans--d6][PtCl3(dmso)] and [cis--d6][PtCl3(dmso)]. The reaction involves partial dissociation of the bipyridinium from Pt of [trans-][PtCl3(dmso)] or [cis-][PtCl3(dmso)] to yield [PtCl3(dmso)] and formation of pseudorotaxane with alpha-CD, followed by recoordination of the bipyridinium to the Pt. The reversible formation of the Pt-N coordination bond is studied in a dmso solution of the N-butyl compounds [trans-Cl2(dmso)Pt{4,4'-bpy-N-nBu}][PtCl3(dmso)] ([trans-][PtCl3(dmso)]).  相似文献   

12.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

13.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

14.
Treatment of [n-Bu4N][Ru(N)Cl4] with [AgL(OEt)] (L(OEt)- = [(eta5-C5H5)Co{P(O)(OEt)2}3]-) afforded the ruthenium(VI) nitrido complex [L(OEt)Ru(N)Cl2] (1), which reacted with PPh3 to give the ruthenium(IV) phosphiniminato complex [L(OEt)Ru(NPPh3)Cl2] (2). The cyclic voltammogram of 2 displays the RuIV/III couple at ca. 0 V vs ferrocenium/ferrocene. Treatment of 1 with Me3NO afforded [LOEtRu(NO)Cl2] (3), which reacted with Ag(OTf) (OTf- = triflate) to give the chloro-bridged tetranuclear ruthenium/silver complex [L(OEt)Ru(NO)Cl2]2[Ag(OTf)]2 (4). Treatment of 1 with Na2S2O3 gave the thionitrosyl complex [L(OEt)Ru(NS)Cl2] (5). The solid-state structures of 1-4 have been established by X-ray crystallography.  相似文献   

15.
Four ruthenium nitrosyls, namely [(bpb)Ru(NO)(Cl)] (1), [(Me(2)bpb)Ru(NO)(Cl)] (2), [(Me(2)bpb)Ru(NO)(py)](BF(4)) (3), and [(Me(2)bqb)Ru(NO)(Cl)] (4) (H(2)bpb = 1,2-bis(pyridine-2-carboxamido)benzene, H(2)Me(2)bpb = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzene, H(2)Me(2)bqb = 1,2-bis(quinaldine-2-carboxamido)-4,5-dimethylbenzene; H is the dissociable amide proton), have been synthesized and characterized by spectroscopy and X-ray diffraction analysis. All four complexes exhibit nu(NO) in the range 1830-1870 cm(-)(1) indicating the [Ru-NO](6) configuration. Clean (1)H NMR spectra in CD(3)CN (or (CD(3))(2)SO) confirm the S = 0 ground state for all four complexes. Although the complexes are thermally stable, they release NO upon illumination. Rapid NO dissociation occurs when solutions of 1-3 in acetonitrile (MeCN) or DMF are exposed to low-intensity (7 mW) UV light (lambda(max) = 302 nm). Electron paramagnetic resonance (EPR) spectra of the photolyzed solutions display anisotropic signals at g approximately 2.00 that confirm the formation of solvated low-spin Ru(III) species upon NO release. The ligand trans to bound NO namely, anionic Cl(-) and neutral pyridine, has significant effect on the electronic and NO releasing properties of these complexes. Change in the in-plane ligand strength also has effects on the rate of NO release. The absorption maximum (lambda(max)) of 4 is significantly red shifted (455 nm in DMF) compared to the lambda(max) values of 1-3 (380-395 nm in DMF) due to the extension of conjugation on the in-plane ligand frame. As a consequence, 4 is also sensitive to visible light and release NO (albeit at a slower rate) upon illumination to low-intensity visible light (lambda > 465 nm). Collectively, the photosensitivity of the present series of ruthenium nitrosyls demonstrates that the extent of NO release and their wavelength dependence can be modulated by changes of either the in-plane or the axial ligand (trans to bound NO) field strength.  相似文献   

16.
Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n). The complexes [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] are also first oxidised at the catecholate ligand; the second oxidation, and one-electron reduction, are based on the M(CO)(PhC[triple band]CPh)Tp' fragment. Chemical oxidation of [(o-O,C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] with [Fe(eta-C5H4COMe)(eta-C5H5)][BF4], or of [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] with AgBF4, gave the paramagnetic monocations [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)]+ and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp']+, the ESR spectra of which are consistent with ruthenium-bound semiquinone ligands. Linkage isomers are distinguishable by the magnitude of the 31P hyperfine coupling constant; complexes with N-bound Ru(o-O2C6Cl4) units also show small hyperfine coupling to the nitrogen atom of the cyanide bridge.  相似文献   

17.
Two fluorescent ligands, 3,5-dimethyl-4-(6'-sulfonylammonium-1'-azonaphthyl)pyrazole (dmpzn, 1) and 3,5-dimethyl-4-(4'-N,N'-dimethylaminoazophenyl)pyrazole (dmpza, 2) were obtained by condensation of ketoenolic derivatives with hydrazine. 1 and 2 formed the novel dinuclear complexes [(H(2)O)(3)ClRu(micro-L)(2)RuCl(H(2)O)(3)] (3 or 4) and [(H(2)O)(NO)Cl(2)Ru(micro-L)(2)RuCl(2)(NO)(H(2)O)] (6 or 7) (where L 1 = 2 or , respectively) which were characterized by IR, NMR and elemental analysis. The nitrosyl complexes were prepared by bubbling purified nitric oxide through methanol solutions of the corresponding ruthenium(II) chloroderivative or by reaction of the appropriate ligands with Ru(NO)Cl(3). Complexes 3 and 4 were found to bind NO, resulting in an increase in fluorescence. Ligand 1 also formed the mononuclear nitrosyl complex [Ru(NO)(bpy)(2)(dmpzn)]Cl(2) (8) which released NO in water at physiological pH and in the solid state as revealed by fluorescence and IR measurements, respectively.  相似文献   

18.
The 1,1-cyclobutane dicarboxylate ligand (cbdc), that normally binds to metal centres as a chelate (eta(2)-cbdc-O,O'), prefers to bind in an unprecedented bridging fashion (micro-cbdc-O,O') on cationic Ru(ii) centres bearing ancillary ligands (e.g. H(2)O, NH(3)) capable of making intramolecular H-bonds with the non-coordinated oxygen atoms of the carboxylate groups. Thus, the thermodynamic product of the reaction between cis,fac-[RuCl(2)(dmso-S)(3)(dmso-O)]() and cbdc in a number of different reaction conditions is the dinuclear species with two bridging cbdc units fac-[Ru(micro-cbdc-O,O')(dmso-S)(3)(H(2)O)](2) (2). Similarly, reaction of cis,fac-[RuCl(2)(dmso-S)(3)(NH(3))] (3) with cbdc yielded the corresponding dinuclear species fac-[Ru(micro-cbdc-O,O')(dmso-S)(3)(NH(3))](2) (4), in which ammonia occupies the position of the water molecule in 2. Both dinuclear species 2 and 4 were characterized by X-ray crystallography and have an anti geometry with respect to the H(2)O or NH(3) ligands. The results from the X-ray studies are consistent with the NMR spectroscopic data, indicating that the dinuclear structures observed in the solid state are maintained in solution. The mononuclear anionic complex with a chelating cbdc unit, K{fac-[RuCl(eta(2)-cbdc-O,O')(dmso-S)(3)]}(5), was isolated under appropriate conditions form the reaction of 1 with K(2)(cbdc) and was demonstrated to be an intermediate in the formation of 2.  相似文献   

19.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

20.
Reaction of the methylcyclopentadienyl (Cp') cluster compound [(eta(5)-Cp')(3)Mo(3)S(4)][pts] (pts = p-toluenesulfonate) with noble metal alkene complexes resulted in the formation of four new heterobimetallic cubane-like Mo(3)S(4)M' cluster cores (M' = Ru, Os, Rh, Ir). Thus, reaction with [(1,5-cod)Ru(CO)(3)] or [(1,3-cod)Os(CO)(3)] (cod = cyclooctadiene) afforded [(eta(5)-Cp')(3)Mo(3)S(4)M'(CO)(2)][pts] (M' = Ru: [1][pts]; M' = Os: [2][pts]). When [1][pts] was kept in CH(2)Cl(2)/pentane solution, partial loss of carbonyl ligands occurred and the carbonyl-bridged dicubane cluster [((eta(5)-Cp')(3)Mo(3)S(4)Ru)(2)(mu-CO)(3)][pts](2) was isolated. An X-ray crystal structure revealed the presence of the hitherto unobserved Ru(mu-CO)(3)Ru structural element. The formation of cluster compounds containing Mo(3)S(4)Rh and Mo(3)S(4)Ir cores was achieved in boiling methanol by reacting [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [M'Cl(cyclooctene)(2)](2) (M' = Rh, Ir) in the presence of PPh(3). In this way [(eta(5)-Cp')(3)Mo(3)S(4)M'Cl(PPh(3))][pts] (M' = Rh, Ir) could be isolated. An alternative route to the Mo(3)S(4)Rh cluster core was found in the reaction of [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [RhCl(1,5-cod)](2), which yielded [(eta(5)-Cp')(3)Mo(3)S(4)Rh(cod)][pts](2) ([7][pts](2)). Substitution of the cod ligand in [7][pts](2) by 1,3-bis(diphenylphosphanyl)propane (dppp) gave [(eta(5)-Cp')(3)Mo(3)S(4)Rh(dppp)][pts](2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号