首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of Os(II) diimine complexes with the general formula [Os(N(wedge)N)(CO)(2)I(2)], N(wedge)N = 2,2'-bipyridine (bpy) (1), 4,4'-di-tert-butyl-2,2'-bipyridine (dbubpy) (2), 4,7-diphenyl-1,10-phenanthroline (dpphen) (3), 2-(2'-pyridyl)benzoxazole (pboz) (4), and 5-tert-butyl-2-(2'-pyridyl)benzoxazole (bupboz) (5), were synthesized and characterized by spectroscopic methods and by a single-crystal X-ray diffraction study on the dpphen complex 3. The corresponding photophysical properties were studied using UV-vis and emission spectrometry. The resulting phosphorescence features both in solution and as a solid film, in combination with the MO calculation, lead us to conclude that the emissions originate from mixed halide-to-ligand (XLCT approximately 70%) and metal-to-ligand (MLCT approximately 30%) transitions instead of the typical MLCT transition. Using complexes 4 and 5 as the dopant emitters, we evaluated their potential to serve as a phosphor for organic light emitting diodes by examining their electroluminescent performances. Reddish orange electroluminescence centered around 600 nm was observed for organic light emitting diodes (OLEDs) fabricated using complex 5 as the emitter; the device efficiency was shown to be as high as 2.8% (and 5.0 cd/A or 2.7 lm/W), and the peak luminance was shown to be 5600 cd/m(2) at a driving voltage of approximately 15 V.  相似文献   

2.
A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.  相似文献   

3.
A series of cyclometalated gold(III) compounds [Au(m)(C(wedge)N(wedge)C)mL]n+ (m = 1-3; n = 0-3; HC(wedge)N(wedge)CH = 2,6-diphenylpyridine) was prepared by ligand substitution reaction of L with N-donor or phosphine ligands. The [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds are stable in solution in the presence of glutathione. Crystal structures of the gold(III) compounds containing bridging bi- and tridentate phosphino ligands reveal the presence of weak intramolecular pi pi stacking between the [Au(C(wedge)N(wedge)C)]+ units. Results of MTT assays demonstrated that the [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds containing nontoxic N-donor auxiliary ligands (2) exert anticancer potency comparable to that of cisplatin, with IC50 values ranging from 1.5 to 84 microM. The use of [Au(C(wedge)N(wedge)C)(1-methylimidazole)]+ (2 a) as a model compound revealed that the gold(III)-induced cytotoxicity occurs through an apoptotic cell-death pathway. The cell-free interaction of 2 a with double-stranded DNA was also examined. Absorption titration showed that 2 a binds to calf-thymus DNA (ctDNA) with a binding constant of 4.5 x 10(5) dm3 mol(-1) at 298 K. Evidence from gel-mobility-shift assays and viscosity measurements supports an intercalating binding mode for the 2 a-DNA interaction. Cell-cycle analysis revealed that 2 a causes S-phase cell arrest after incubation for 24 and 48 hours. The cytotoxicity of 3 b-g toward cancer cells (IC50 = 0.04-4.3 microM) correlates to that of the metal-free phosphine ligands (IC50 = 0.1-38.0 microM), with [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) and dppp (dppp = 1,2-bis(diphenylphosphino)propane) being the most cytotoxic gold(III) and metal-free compounds, respectively. Compound 3 d shows a cytotoxicity at least ten-fold higher than the other gold(III) analogues; in vitro cellular-uptake experiments reveal similar absorptions for all the gold(III) compounds into nasopharyngeal carcinoma cells (SUNE1) (1.18-3.81 ng/cell; c.f., 3 d = 2.04 ng/cell), suggesting the presence of non-gold-mediated cytotoxicity. Unlike 2 a, both gold(III) compounds [Au(C(wedge)N(wedge)C)(PPh3)]+ (3 a) (PPh3 = triphenylphosphine) and [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) interact only weakly with ctDNA and do not arrest the cell cycle.  相似文献   

4.
Aryliminopropadienethiones 9 have been generated by flash vacuum thermolysis of isoxazolones of the type 5 and characterized by mass spectrometry and matrix isolation IR spectroscopy in conjunction with DFT calculations and chemical trapping.  相似文献   

5.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

6.
The interactions of cyanoacetylene and diacetylene with a Si(111)-7 x 7 surface have been studied as model systems to mechanistically understand the chemical binding of unsaturated organic molecules to diradical-like silicon dangling bonds. Vibrational studies show that cyanoacetylene mainly binds to the surface through a diradical reaction involving both cyano and C[triple bond]C groups with an adjacent adatom-rest atom pair at 110 K, resulting in an intermediate containing triple cumulative double bonds (C=C=C=N). On the other hand, diacetylene was shown to the covalently attached to Si(111)-7 x 7 only through one of its C[triple bond]C groups, forming an enynic-like structure with a C=C-C[triple bond]C skeleton. These chemisorbed species containing triple cumulative double bonds (C=C=C=N) and C=C-C[triple bond]C may be employed as precursors (or templates) for further construction of bilayer organic films on the semiconductor surfaces.  相似文献   

7.
The effect of a hydrostatic pressure of up to 1000 kg cm−2 on the rate constants of the Diels-Alder reactions of maleic anhydride with 1,2,3,4-tetraphenylcyclopentadiene and with 6,13-dichloropentacene, of 4-phenyl-1,2,4-triazoline-3,5-dione with hexachlorocyclopentadiene, and of thiobenzophenone with isoprene was studied at 25 °C. The volume parameters and ratios of the activation to reaction volumes make it possible to exclude electrostriction of the solvent during transition state solvation in all the reactions studied, which corresponds to the nonpolar nature of the transition state. Dedicated to Academician A. L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1973–1980, September, 2005.  相似文献   

8.
Summary.  DFT calculations predict the existence of three new triplet ground state silylenes: [(imino)-methylene]silylene, [(cyanoimino)methylene]silylene, and [(methoxyimino)methylene]silylene, with CNSiX formula (X = H, CN, and OMe, respectively). Discrepancies are found between DFT and some ab initio results.  相似文献   

9.
A new silole monomer with two 4-(N,N-dimethylamino)phenyl substitutions on silicon atom as designed and synthesized.Three copolymers PF-N-HPS1,PF-N-HPS10 and PF-N-HPS20 were then obtained by copolymerizations of 2,7-fluorene derivatives with the silole monomer at feed ratios of 1%,10%,and 20%.Their UV-vis absorption,electrochemical,photoluminescent,and electroluminescent (EL) properties were investigated.PF-N-HPS possessed HOMO levels of 5.25-5.58 eV,and showed green emissions.Using PF-N-HPS as the emissive layer,three different polymer light-emitting diodes were fabricated as device A with ITO/PEDOT/PF-N-HPS/Al,device B with ITO/PEDOT/PF-N-HPS/Ba/Al,and device C with ITO/PEDOT/PF-N-HPS/TPBI/Ba/Al.For the device A,PF-N-HPS only showed very low EL efficiency of 0.06-0.33 cd/A,indicating that the Al cathode could not inject electron efficiently to the emissive polymers containing the 4-(N,N-dimethylamino)phenyl groups.For the device B,low work function Ba supplied better electron injections,and the EL efficiency could be improved to 0.85-1.44 cd/A.TPBI with a deep HOMO level of 6.2 eV could enhance electron transport and hole blocking.Thus modified recombinations and largely elevated EL efficiency of 4.56-7.96 cd/A were achieved for the device C.The separation of the emissive layer and metal cathode with the TPBI layer may also suppress exciton quenching at the cathode interface.  相似文献   

10.
The paper reviews the contribution from our group to the studies of heteroallenes. The transient 1,3-phosphasilaallene ArP=C=Si(Ph)Tip (Ar = 2,4,6-tri-tert-butylphenyl, Tip = 2,4,6-triisopropylphenyl) and 1,3-phosphagermaallene ArP=C=GeMes2 (Mes = 2,4,6-trimethylphenyl) were characterized below –40 °C by NMR spectroscopy and chemical trapping. These compounds dimerize above –40 °C through two routes. With increased steric hindrance on germanium, the phosphagermaallene ArP=C=Ge(But)Tip was stabilized as monomer at room temperature. 3-Chloro-2-lithio-1,3-phosphasilapropene ArP=C(Li)Si(Cl)CMeR2 (CMeR2 = 9-methylfluorenyl) behaves, at least in some cases, as a synthetic equivalent of the functionalizable allene ArP=C=Si(Cl)CMeR2. Arsaallene ArAs=C=CR2, phosphaarsaallenes ArP=C=AsAr and ArP=C=AsDmt (Dmt = 2,6-dimesityl-4-methylphenyl), and diarsaallene ArAs=C=AsAr exhibit a higher thermal, air, and moisture stability than the above phosphasilaallenes and phosphagermaallenes. The physicochemical data for the arsaallenes and diarsaallenes, particularly, their X-ray structural parameters, display a bonding system close to allenes. On going down the Periodic table, the stabilization becomes more difficult. For this reason, tin allenic derivatives are very rare and antimony allenic compounds have not yet been isolated.  相似文献   

11.
蔡淑惠  李隽 《结构化学》1993,12(3):224-228
本文采用EHT近似下的紧束缚能带方法,计算了NbX(X=C,N,O)的能带结构。结果表明,它们的能带结构相近,Nb—X间存在较强的成键作用,传导电子主要具有Nb的4d特征,Nb—Nb键与超导电性相关,从C到N,Nb—Nb键共价性削弱,Tc提高。尽管计算所得NbO中Nb—Nb键强度介于NbC和NbN之间,但其实际Tc却比NbC和NbN的都低,这是NbO的空位效应所致,这一结果可从我们对有序缺陷的Nb_(0.75)O_(0.75)晶体能带结构的计算得到验证。  相似文献   

12.
Using the ab initio method, the geometrical structures of C(36) and the X (B,N)-doped isomers C(34)X(2) have been optimized. On the basis of the optimized structures, then, the third-order nonlinear optical polarizabilities gamma in the different optical processes of the third-harmonic generation, electric-field induced second-harmonic generation and degenerate four-wave mixing, and two-photon absorption (TPA) cross sections delta are calculated by using TDB3LYP method coupled with the sum-over-states method. The calculated results show that the one-photon allowed excitation process dominate the two-photon excitation process for C(36)-D(6h), whereas the two-photon allowed excitation process dominate the one-photon excitation process for C(36)-D(2d) and C(34)X(2) (B,N). It is found that the largest resonant TPA peaks of dopant fullerenes have a blueshift and the TPA cross sections have an enhancement compared with those of the parent fullerenes of isomers C(36)-D(6h) and C(36)-D(2d).  相似文献   

13.
The crystal structures and photophysical properties of mononuclear [(RC N N)PtX](ClO4)n ((RC N N)=3-(6'-(2'-naphthyl)-2'-pyridyl)isoquinolinyl and derivatives; X=Cl, n=0; X=PPh(3) or PCy(3), n=1), dinuclear [(RC N N)2Pt2(mu-dppm)](ClO4)2 (dppm=bis(diphenyphosphino)methyl) and trinuclear [(RC N N)3Pt3(mu-dpmp)](ClO4)3 (dpmp=bis(diphenylphosphinomethyl)phenylphosphine) complexes are presented. The crystal structures show extensive intra- and/or intermolecular pipi interactions; the two (RC N N) planes of [(RC N N)2Pt2(mu-dppm)](ClO4)2 (R=Ph, 3,5-tBu2Ph or 3,5-(CF3)2Ph) are in a nearly eclipsed configuration with torsion angles close to 0 degrees. [(RC N N)PtCl], [(RC N N)2Pt2(mu-dppm)](ClO4)2, and [(RC N N)3Pt3(mu-dpmp)](ClO4)3 are strongly emissive with quantum yields of up to 0.68 in CH2Cl2 or MeCN solution at room temperature. The [(RC N N)PtCl] complexes have a high thermal stability (T(d)=470-549 degrees C). High-performance light-emitting devices containing [(RC N N)PtCl] (R=H or 3,5-tBu2Ph) as a light-emitting material have been fabricated; they have a maximum luminance of 63,000 cd m(-2) and CIE 1931 coordinates at x=0.36, y=0.54.  相似文献   

14.
Conversion of N=N=CHSiMe3 to O=C=CHSiMe3 by the radical complexes .Cr(CO)3C5R5 (R = H, CH3) derived from dissociation of [Cr(CO)3(C5R5)]2 have been investigated under CO, Ar, and N2 atmospheres. Under an Ar or N2 atmosphere the reaction is stoichiometric and produces the Cr[triple bond]Cr triply bonded complex [Cr(CO)2(C5R5)]2. Under a CO atmosphere regeneration of [Cr(CO)3(C5R5)]2 (R = H, CH3) occurs competitively and conversion of diazo to ketene occurs catalytically as well as stoichiometrically. Two key intermediates in the reaction, .Cr(CO)2(ketene)(C5R5) and Cr2(CO)5(C5R5)2 have been detected spectroscopically. The complex .Cr(13CO)2(O=13C=CHSiMe3)(C5Me5) has been studied by electron spin resonance spectroscopy in toluene solution: g(iso) = 2.007; A(53Cr) = 125 MHz; A(13CO) = 22.5 MHz; A(O=13C=CHSiMe3) = 12.0 MHz. The complex Cr2(CO)5(C5H5)2, generated in situ, does not show a signal in its 1H NMR and reacts relatively slowly with CO. It is proposed to be a ground-state triplet in keeping with predictions based on high level density functional theory (DFT) studies. Computed vibrational frequencies are also in good agreement with experimental data. The rates of CO loss from 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)2(C5H5)]2 and CO addition to 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)3(C5H5)]2 have been measured by kinetics and show DeltaH approximately equal 23 kcal mol(-1) for both processes. Enthalpies of reduction by Na/Hg under CO atmosphere of [Cr(CO)n(C5H5)]2 (n = 2,3) have been measured by solution calorimetry and provide data for estimation of the Cr[triple bond]Cr bond strength in [Cr(CO)2(C5H5)]2 as 72 kcal mol(-1). The complex [Cr(CO)2(C5H5)]2 does not readily undergo 13CO exchange at room temperature or 50 degrees C implying that 3Cr2(CO)5(C5H5)2 is not readily accessed from the thermodynamically stable complex [Cr(CO)2(C5H5)]2. A detailed mechanism for metalloradical based conversion of diazo and CO to ketene and N2 is proposed on the basis of a combination of experimental and theoretical data.  相似文献   

15.
The azazirconacyclopentene-substituted phosphines 3 and 4 have been found to activate the C-H bonds of acetylenic systems, such as methylpropiolate, diphenylphosphinoacetylene and phenylacetylene, or of methylene compounds, such as malonitrile and diethylmalonate, to give complexes 5a-c, 6a and 6b. C-H bond activation also takes place with vinylacetate. Similar reactions with amines, alcohols, enolisable ketones, phenols, phosphonates, thiols and a second-generation SH-terminated dendrimer lead through X-H bond activation (X = N, O, P, S) to new complexes 8a-c, 9, 12 a,b, 13, 14a-c, 15, 16a and 16b. The azazirconacyclopentene-substituted amine 20 reacts to form analogous complexes. Zr-X bonds of these complexes (X = C, N, O, S) can be cleaved with diphenylchlorophosphine to give P-X phosphorus derivatives in high yield.  相似文献   

16.
17.
The performance of a density functional theory approach in calculating the equilibrium bond length, dipole moment, and harmonic vibrational frequency in a series of group 6 (Cr, Mo, W) transition metal-containing diatomic molecules is evaluated. Using flexible basis sets comprised of Slater type functions, a wide range of exchange-correlation functionals is investigated. Comparing with known experimental values and published results from high-level theoretical calculations, the most suitable functional form is selected. The importance of relativistic effects is checked, and predictions are made for several unknown dipole moments. The best agreement with experimental parameters is obtained when using a general gradient approximation, while special and hybrid functional forms give less accurate results.  相似文献   

18.
Oxidative insertion of the In(I) 'carbene analogues', [In{N(Dipp)C(Me))2CH] (Ar = Dipp = 2,6-iPr2C6H3; Ar = Mes = 2,4,6-Me3C6H2) into the Fe-I bond of [CpFe(CO)2I] occurred cleanly and under mild conditions to yield the In(III) compounds [CH((CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] and [CH( (CH3)2CN-2,4,6-Me3C6H3)2In(I)FeCp(CO)2], which have been fully characterised in solution and the solid state. Attempts to abstract the iodide anion from [CH( (CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] to form cationic species containing a coordinated indium diyl were unsuccessful and resulted in a complex mixture of products from which two ionic species were isolated. Neither cation was found to contain indium by X-ray crystallographic analysis. These observations were indicative of ill-defined decomposition pathways as have been noted by previous workers. A further attempt to form a cationic iron species containing a coordinated [In(N(Dipp)C(Me) )2CH] fragment resulted in oxidation of the iron centre from Fe(II) to Fe(III), with deposition of indium metal, and the isolation of a cationic Fe(III) beta-diketiminate complex.  相似文献   

19.
The electrosynthesis of Rh(2)(dpf)(4)(R) where dpf is the N,N'-diphenylformamidinate anion and R = CH(3), C(2)H(5), C(3)H(7), C(4)H(9) or C(5)H(11) was carried out in THF containing 0.2 M tetra-n-butylammonium perchlorate (TBAP) and one of several alkyl iodides represented as RI. The initial step in the reaction involved a one-electron reduction of the Rh(2)(4+) unit in Rh(2)(dpf)(4) to its Rh(2)(3+) form followed by a homogeneous reaction involving electrogenerated [Rh(2)(dpf)(4)](-) and the alkyl iodide in solution to give Rh(2)(dpf)(4)(R). The homogeneously generated Rh(2)(5+) product was then immediately reduced by a second electron at the potential where [Rh(2)(dpf)(4)(R)](-) is generated, giving [Rh(2)(dpf)(4)(R)](-) which contains a Rh(2)(4+) center as a final product of an electrochemical ECE mechanism. The electrosynthesized [Rh(2)(dpf)(4)(CH(3))](-) derivative could be reoxidized to Rh(2)(dpf)(4)(CH(3)) on the reverse potential sweep and both forms of the CH(3) bonded derivative were in situ characterized by cyclic voltammetry combined with UV-visible and/or ESR spectroscopy. The reversible Rh(2)(4+/3+) process of Rh(2)(dpf)(4) is located at E(1/2) = -1.11 V in THF, 0.2 M TBAP while the electrogenerated Rh(2)(dpf)(4)(R) products are substantially easier to reduce, with E(p) values for the Rh(2)(5+/4+) couples ranging from -0.50 to -0.54 V vs. SCE depending upon the specific R group.  相似文献   

20.
Five new three-coordinate boron compounds with a B=N bond involving an indole or a substituted indole ligand including B(mesityl)2(indolyl), (1), B(mesityl)2(2-Me-indolyl), (2), B(mesityl)2(3-Me-indolyl), (3), B(mesityl)2 (7-Me-indolyl), (4), and B(mesityl)2(3-Ph-indolyl), (5) have been synthesized. The structures of these new compounds were determined by X-ray diffraction analyses. All five compounds are luminescent involving a charge transfer transition between the indolyl pi orbital and the boron p(pi) orbital. The substituent group on the indolyl ring was found to have a subtle impact on the electronic properties of compounds. NMR experiments established that the methyl group at the 7-position of indole is most effective in blocking the rotation of the mesityl group around the B-C bond. The addition of fluoride ions to this group of compounds causes luminescent quenching and an irreversible decomposition of the compounds due to the reaction of the F- adduct with water molecules. The potential use of this group of compounds as blue emitters in electroluminescent (EL) devices was demonstrated by the successful fabrication of a four-layer EL device where 1 was used as the emitter. The EL device displays a blue emission with a maximum luminescence being 1037 cd m(-2) and a maximum current efficiency about 0.7 cd A(-1) at 5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号