首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new research realm in crystal engineering of supramolecular architecturesassembled by means of coordinate covalent bonding', hydrogen bonding', or other weakintermolecular interactions= has been rapidly expanding in order to rationally developnew classes of functional materials with cavities or pores. These types of compoundsmay exhibit interesting topological structures and the clathrations of the cavity structuresmay have many potential properties such as catalysis', electrical co…  相似文献   

2.
The influence of organonitrogen ligands on the network structure of molybdenum oxides was examined by preparing three new molybdenum oxide phases [MoO3(4,4'-bpy)0.5] (MOXI-8), [HxMoO3(4,4'-bpy)0.5] (MOXI-9), and [MoO3(triazole)0.5] (MOXI-32). The structure of [MoO3(4,4'-bpy)0.5) consists of layers of corner-sharing MoO5N octahedra, buttressed by bridging 4,4'-bipyridyl ligands into a three-dimensional covalently bonded organic-inorganic composite material. Partial reduction of [MoO3(4,4'-bpy)0.5] yields the mixed-valence material [HxMoO3(4,4'-bpy)0.5] (x approximately 0.5). The most apparent structural change upon reduction is found in the Mo-ligand bond lengths of the MoO5N octahedra, which exhibit the usual (2 + 2 + 2) pattern in [MoO3(4,4'-bpy)0.5] and a more regular (5 + 1) pattern in [HxMoO3(4,4'-bpy)0.5]. Substitution of triazole for 4,4'-bipyridine yields [MoO3(triazole)0.5], which retains the layer motif of corner-sharing MoO5N octahedra but with distinct sinusoidal ruffling in contrast to planar layers of [MoO3(4,4'-bpy)0.5] and [HxMoO3(4,4'-bpy)0.5]. The folding reflects the ligand constraints imposed by the triazole ligand that bridges adjacent Mo sites within a layer. MOXI-8, C5H4NMoO3: monoclinic P2(1)/c, a = 7.5727(6) A, b = 7.3675(7) A, c = 22.433(3) A, beta = 90.396(8) degrees, Z = 8. MOXI-9, C5H4.5NMoO3: monoclinic I2/m, a = 5.2644(4) A, b = 5.2642(4) A, c = 22.730(2) A, beta = 90.035(1) degrees, Z = 4. MOXI-32, C2H3N3Mo2O6: orthorhombic Pbcm, a = 3.9289(5) A, b = 13.850(2) A, c = 13.366(2) A, Z = 4.  相似文献   

3.
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy = bipydine),was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a = 19.1921(5), b = 18.6931(6), c = 9.3821 (3) (A), β = 104.8020(11)°, V = 3254.22(17) (A)3, C50H51Mo8N10NaO30, Mr = 2062.52, Z = 2,F(000) = 2016,μ = 1.591 mm- 1 and Dc = 2.105 g/cm3. The final R = 0.0283 and wR = 0.0912 for 3118 observed reflections (I > 2σ(Ⅰ)). Compound 1 contains the β-[Mo8O26]4- anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[Mo8O26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]3- blocks are surrounded by protonized 4,4'-bpy cations,4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.  相似文献   

4.
A combination of framework-builder (Cu(II) ion and 4,4'-bipyridine (4,4'-bpy) ligand) and framework-regulator (AF(6) type anions; A = Si, Ge, and P) provides a series of novel porous coordination polymers. The highly porous coordination polymers ([Cu(AF(6))(4,4'-bpy)(2)].8H(2)O)(n)(A = Si (1a.8H(2)O), Ge (2a.8H(2)O)) afford robust 3-dimensional (3-D), microporous networks (3-D Regular Grid) by using AF(6)(2-) anions. The channel size of these complexes is ca. 8 x 8 A(2) along the c-axis and 6 x 2 A(2) along the a- or b-axes. When compounds 1a.8H(2)O or 2a.8H(2)O were immersed in water, a conversion of 3-D networks (1a.8H(2)O or 2a.8H(2)O) to interpenetrated networks ([Cu(4,4'-bpy)(2)(H(2)O)(2)].AF(6))(n)(A = Si (1b) and Ge (2b)) (2-D Interpenetration) took place. This 2-D interpenetrated network 1b shows unique dynamic anion-exchange properties, which accompany drastic structural conversions. When a PF(6)(-) monoanion instead of AF(6)(2)(-) dianions was used as the framework-regulator with another co-counteranion (coexistent anions), porous coordination polymers with various types of frameworks, ([Cu(2)(4,4'-bpy)(5)(H(2)O)(4)].anions.2H(2)O.4EtOH)(n)(anions = 4PF(6)(-) (3.2H(2)O.4EtOH), 2PF(6)(-) + 2ClO(4)(-) (4.2H(2)O.4EtOH)) (2-D Double-Layer), ([Cu(2)(PF(6))(NO(3))(4,4'-bpy)(4)].2PF(6).2H(2)O)(n)(5.2PF(6).2H(2)O) (3-D Undulated Grid), ([Cu(PF(6))(4,4'-bpy)(2)(MeCN)].PF(6).2MeCN)(n)(6.2MeCN) (2-D Grid), and ([Cu(4,4'-bpy)(2)(H(2)O)(2)].PF(6).BF(4))(n) (7) (2-D Grid), were obtained, where the three modes of PF(6)(-) anions are observed. 5.2PF(6).2H(2)O has rare PF(6)(-) bridges. The PF(6)(-) and NO(3)(-) monoanions alternately link to the Cu(II) centers in the undulated 2-D sheets of [Cu(4,4'-bpy)(2)](n)() to form a 3-D porous network. The free PF(6)(-) anions are included in the channels. 6.2MeCN affords both free and terminal-bridged PF(6)(-) anions. 3.2H(2)O.4EtOH, 4.2H(2)O.4EtOH, and 7 bear free PF(6)(-) anions. All of the anions in 3.2H(2)O.4EtOH and 4.2H(2)O.4EtOH are freely located in the channels constructed from a host network. Interestingly, these Cu(II) frameworks are rationally controlled by counteranions and selectively converted to other frameworks.  相似文献   

5.
Five new materials built from polyoxotungstates and Cu(ii) ions as linkers have been synthesized by hydrothermal reactions from a mixture of sodium tungstate, copper chloride and bipyridine. The value of the initial pH, the nature of the heteroelement (P or Si) and of the ligand (2,2'- and/or 4,4'-bipyridine) permit the control of the nature of the polyoxotungstate clusters and their connectivity via the copper ions, and hence the dimensionality of the framework. A single phase has been obtained with silicon as heteroelement at an initial pH of 5, namely the 2D material [SiW(12)O(40)][Cu(2,2'-bpy)(2)](2).10H(2)O (1) with saturated Keggin polyoxotungstates linked by {Cu(2,2'-bpy)(2)}(2+) groups. With phosphorous as heteroelement and at the same initial pH, three different structures have been isolated according to the nature of the ligand. Indeed, the two 1D materials [{Cu(5)(2,2'-bpy)(5)(H(2)O)(HPO(4))(PO(4))}PW(11)CuO(39)].6H(2)O (2) with 2,2'-bpy and [4,4'-Hbpy][{Cu(2)(2,2'-bpy)(2)(4,4'-bpy)(2.5)}PW(11)CuO(39)].16H(2)O (3) with a mixture of 2,2'- and 4,4'-bpy have been characterized, and a coordination polymer with polyoxometalate guests Na(3)[4,4'-Hbpy]{Cu(4)(4,4'-bpy)(8)(H(2)O)(8)}[PW(11)CuO(39)(H(2)O)][PW(10)Cu(2)O(38)(H(2)O)(2)].38H(2)O (4) with 4,4'-bpy has been obtained. Finally, in basic medium (pH = 10) the unprecedented molecular cluster Na(2)[{Cu(8)(2,2'-bpy)(8)}(PW(8)O(31))(2)].15H(2)O (5) has been evidenced. Magnetic studies of compound 2 revealed that the predominant interactions involve only 4 paramagnetic centers, which are interacting within pairs, among the 6 Cu(ii) centers. The chi(M)T=f(T) curve can be fitted using the dinuclear expression appropriate to the HDVV isotropic exchange Hamiltonian H=-JS(1)xS(2), with S(1)=S(2)=(1/2) and J=-105.4 cm(-1), showing strong antiferromagnetic interactions within the two Cu(ii) pairs.  相似文献   

6.
Reaction of the preorganized strands of ([Cu(II)(mu-4,4'-bpy)](2+))n (4,4'-bpy = 4,4'-bipyridine) with [W(V)(CN)(8)](3)(-) leads to a novel cyano-bridged Cu(II)(3)W(V)(2) complex [Cu(mu-4,4'-bpy)(DMF)(2)][Cu(mu-4,4'-bpy)(DMF)](2)[W(V)(CN)(8)](2).2DMF. 2H(2)O 1. The structure of 1 consists of the expected 2-dimensional grid-type network which is built of infinite ([Cu(II)(mu-4,4'-bpy)](2+))n chains cross-linked by octacyanotungstate units. The Cu(II)-NC-W(V)-CN-Cu(II) linkage exhibits the topology of a 3,2-chain. The skeleton of the layer is additionally stabilized by a hydrogen bond network formed by terminal cyano ligands of the [W(CN)(8)](3-) moiety and water molecules. The distance between the adjacent Cu(3)(II)W(2)(V) chains within the layer is 11.12 A along the a axis. The layers are connected by H-bonds of NCN-NDMF-NCN linkages into 3-D supramolecular architecture. The magnetic properties correspond to a dominant ferromagnetic coupling within the Cu(II)(3)W(V)(2) pentamer units (J = +35(4) cm(-1)) and much weaker effective AF interunit coupling which include both intra- and inter-3,2-chain interactions between pentamers (J' = -0.05(1) cm(-1)).  相似文献   

7.
Reaction of transition metal formate M(HCOO)(2).2H2O (M = Mn, Co, Ni) with 4,4'-bpy (4,4-bipyridine) has led to four new compounds with the formula M(HCOO)2(4,4'-bpy).nH2O (M = Mn, Co (1.Mn, 2.Co), n = 0; M = Co, Ni (3.Co, 4.Ni), n = 5). Compounds 1.Mn and 2.Co are isomorphous and crystallized in the tetragonal crystal system with the chiral space group P4(1)2(1)2. They are of three-dimensional diamondoid structure connected by anti-anti formate with 4,4'-bpy in the cavities of the framework reinforcing the intermetallic connections; the diamond-like net was observed also in their azide analogue (Mn(N3)2(4,4'-bpy)). Compounds 3.Co and 4.Ni are isomorphous also but crystallized in the monoclinic crystal system with the space group Cc. Both structures are uninterpenetrated 3D "CdSO4" type with big channels, constructed by anti-anti formate and 4,4'-bpy. This type of net was not observed in their azide analogue. Residing in the channels, water molecules form a new type of 1D tape constructed by vertex-sharing cyclic pentamers. Magnetic measurements were performed on all of these four compounds. 1.Mn and 2.Co are weak ferromagnets with the critical temperature Tc = 5.3 and 7.4 K, respectively. 3.Co is an antiferromagnet with Neel temperature TN = 3.0 K, and 4.Ni is a weak ferromagnet below 20 K. Hysteresis loop can be observed for 2.Co and 4.Ni at 1.8 K. As an analogue of azide, formate can be used to construct molecular architectures, which structurally and magnetically have great similarities to and also differences from those of azide. This offers a promising method for the design of new molecular architectures with formate.  相似文献   

8.
The title complex has been obtained by the reaction of cobalt sulfate heptahydrate with 4,4'-bpy and 4-abaH (4,4'-bpy = 4,4'-bipyridine, 4-abaH = 4-aminobenzonic acid) in ethanol solution, and its structure was determined by X-ray crystallography with the following data: tetragonal, space group P42/n, Mr = 5692.46, Co8C192H288N32O120S8, a = b = 16.402(5), c = 22.750(5) (A), Z = 1, V = 6120(2) (A)3, F(000) = 2968, Dc = 1.544 g/cm3,μ = 0.707 mm- 1, the final R = 0.0786 and wR = 0.1935 for 2673 observed reflections (I > 2σ(I)). The title complex consists of polymeric [Co(4,4'-bipy)(H2O)4]2+ cation chains, SO42- anions, lattice 4-abaH and water mole cules. The center CoⅡ ions are connected by bridging 4,4'-bpy ligands exhibiting one-dimensional chains, and coordinated by four water molecules into a distorted octahedral geometry. These chains are further extended by hydrogen bonds among SO42- anions, coordinated and lattice water molecules as well as lattice 4-abaH molecules into a three-dimensional network.  相似文献   

9.
Four hybrid inorganic-metalorganic compounds containing copper(II)-monosubstituted Keggin polyoxotungstates, K3[Cu(I)(4,4'-bpy)]3[SiW11Cu(II)O39].11H2O (1), (paraquat)3[SiW11Cu(II)O39].6H2O (2; paraquat = N,N'-dimethyl-4,4'-bipyridinium), K3[Cu(I)(4,4'-bpy)]3[GeW11Cu(II)O39].11H2O (3), and Na2[Cu(I)(4,4'-bpy)]3[PW11Cu(II)O39(H2O)].4H2O (4), have been synthesized under autogenous pressure hydrothermal conditions and characterized by elemental analysis and infrared spectroscopy (FT-IR). The crystal structures of 1, 2, and 4 have been established by single-crystal X-ray diffraction. The crystal packings are characterized by the presence of monodimensional extended entities: either the polymeric polyanion [SiW11CuO39]n(6n-) (2), the cationic [Cu(4,4'-bpy)]n(n+) chain (4), or both simultaneously as in compound 1, where the inorganic and metalorganic sublattices are mutually perpendicular. To asses the influence of packing in the copper(I) complex structural diversity found in compounds 1 and 4, a search in the CSD database has been performed and the resulting geometrical features have been analyzed and compared with experimental crystallographic data and DFT calculations.  相似文献   

10.
The reaction of CuCl(2).2 H2O with trivacant Keggin polyoxoanions K8Na2[A-alpha-GeW9O34].25 H2O or K10[A-alpha-SiW9O34].25 H2O in the presence of 1,2-diaminopropane (dap), ethylenediamine (en) or 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions afforded five novel hybrid inorganic-organic octa-Cu sandwiched polyoxotungstates (POTs): H4[CuII8(dap)4(H2O)2(B-alpha-GeW9O34)2].13 H2O (1), (H2en)2[CuII8-(en)4(H2O)2(B-alpha-GeW9O34)2].5 H2O(2), (H2en)2[CuII8(en)4(H2O)2(B-alpha-SiW9-O34)2].8 H2O (3), [CuII(H2O)2]H2[CuII8-(en)4(H2O)2(B-alpha-SiW9O34)2] (4), and [CuII2(H2O)2(2,2'-bpy)2]{[CuII(bdyl)]2-[CuII8(2,2'-bpy)4(H2O)2(B-alpha-GeW9-O34)2]}.4 H2O (bdyl=2,2'-bipyridinyl)(5). Additionally, CuCl(2).2 H2O reacts with the mixture of GeO2, Na2WO(4).2 H2O, H2SiW12O(40).2 H2O in the presence of 2,2'-bpy and 4,4'-bpy under hydrothermal conditions leading to another novel mixed-valent octa-Cu sandwiched POT hybrid: [CuI(2,2'-bpy)(4,4'-bpy)]2[{CuI2(2,2'-bpy)2(4,4'-bpy)]2[CuI2CuII6(2,2'-bpy)2(4,4'-bpy)2(B-alpha-GeW9O34)2}].2 H2O (6). 1, 2, and 3 are discrete dimers constructed from two trivacant Keggin [B-alpha-XW9O34]10- (X=GeIV/SiIV) fragments and an octa-Cu cluster whereas 4 displays the 3D (3,6)-connected nets with (4.6(2))(4(2).6(4).8(7).10(2)) topology, which are built by octa-Cu sandwiched polyoxometalate building blocks through copper cation bridges. 5 is a novel 2D layer based on octa-Cu sandwiched POT clusters and [CuII2(bdyl)] units. Interestingly, the rollover metalation of 2,2'-bpy is firstly observed in the system containing the copper complex under hydrothermal conditions. 6 is a discrete mixed-valent octa-Cu sandwiched POT supported by two CuI-complexes [CuI2-(2,2'-bpy)2(4,4'-bpy)]2+ through 4,4'-bpy bridges, which constructs a novel dodeca-copper cluster. Notably, the octa-Cu cluster in 6 is mixed-valent and is different from those in 1-5. To our knowledge, 1-6 represent a rare family of POTs incorporating novel octa-nuclear transition-metal clusters in polyoxometalate chemistry. They were structurally characterized by FT-IR spectra, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. The magnetic properties of 1, 4, and 5 were quantitatively analyzed by the MAGPACK software package.  相似文献   

11.
黄妙龄 《无机化学学报》2007,23(6):1059-1062
The title compound, [Mn(4,4′-bpy)1.5(H2O)3](ClO4)·(4,4′-bpy)(L)·H2O(1), where L=2,4,6-trimethylbenzoic acid, was synthesized and its crystal structure was determined by X-ray diffraction analysis. The crystal is of triclinic, space group P1 with a=2.929 9(6) nm, b=1.036 4(2) nm, c=8.222 0(1) nm, α=105.300(2)°, β=97.495(2)°, γ=91.118(2)°, V=1.884 0(4) nm3, Z=2, Mr=780.10, Dc=1.375 g·cm-3, μ=0.483 mm-1, F(000)=812, R=0.055 4, wR=0.135 2. The Mn atoms are octahedrally coordinated by three N atoms of three 4,4′-bipyridine ligands and three O atoms of water. The complex shows a one-dimensional chain structure bridged by water and 4,4′-bipyridine molecules. CCDC: 615707.  相似文献   

12.
A hydrothermal reaction of copper acetate with ammonium molybdate, 4,4'-bpy (4,4'-bipyridine) and 1,10-phen (1,10-phenanthroline) led to the formation of brown crystals of [Cu2(1,10-phen)2(4,4'-bpy)]2 [Mo8O26]@4H2O 1. Single-crystal X-ray analysis has revealed that 1 C68H56N12O30Cu4Mo8 crystallizes in the triclinic system, space group P ī with a = 11.270(3), b = 13.113(6), c = 13.906(3)A, α = 103.33(4),α = 98.54(2),β= 101.29(2)°, V = 1920.1(1)A3, Mr = 2542.9(3), Z = 1, Dc = 2.199 g/cm3, μ= 2.435 mm-1, F(000)= 1240, the final R = 0.0445, wR = 0.1082 and S = 1.021 for 5052 observed reflections with I>σ2(I).It consists of copper Ⅰ tetramer units and α-[Mo8O26]4- anions, which are further attached into a three-dimensional framework through hydrogen bonding and π-π stacking interactions.  相似文献   

13.
To study the conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H(6)L), eleven new coordination polymers have been isolated from hydrothermal reactions of different metal salts with 1e,2a,3e,4a,5e,6a-cyclohexanehexacarboxylic acid (3e+3a, H(6)L(I)) and characterized. They are [Cd(12)(mu(6)-L(II))(mu(10)-L(II))(3)(mu-H(2)O)(6)(H(2)O)(6)]16.5 H(2)O (1), Na(12)[Cd(6)(mu(6)-L(II))(mu(6)-L(III))(3)]27 H(2)O (2), [Cd(3)(mu(13)-L(II))(mu-H(2)O)] (3), [Cd(3)(mu(6)-L(III))(2,2'-bpy)(3)(H(2)O)(3)]2 H(2)O (4), [Cd(4)(mu(4)-L(VI))(2)(4,4'-Hbpy)(4)(4,4'-bpy)(2)(H(2)O)(4)]9.5 H(2)O (5), [Cd(2)(mu(6)-L(II))(4,4'-Hbpy)(2)(H(2)O)(10)]5 H(2)O (6), [Cd(3)(mu(11)-L(VI))(H(2)O)(3)] (7), [M(3)(mu(9)-L(II))(H(2)O)(6)] (M=Mn (8), Fe (9), and Ni (10)), and [Ni(4)(OH)(2)(mu(10)-L(II))(4,4'-bpy)(H(2)O)(4)]6 H(2)O (11). Three new conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylate, 6e (L(II)), 4e+2a (L(III)) and 5e+1a (L(VI)), have been derived from the conformational conversions of L(I) and trapped in these complexes by controlling the conditions of the hydrothermal systems. Complexes 1 and 2 have three-dimensional (3D) coordination frameworks with nanoscale cages and are obtained at relatively low temperatures. A quarter of the L(I) ligands undergo a conformational transformation into L(II) while the others are transformed into L(III) in the presence of NaOH in 2, while all of the L(I) are transformed into L(II) in the absence of NaOH in 1. Complex 3 has a 3D condensed coordination framework, which was obtained under similar reaction conditions as 1, but at a higher temperature. The addition of 2,2'-bipyridine (2,2'-bpy) or 4,4'-bipyridine (4,4'-bpy) to the hydrothermal system as an auxiliary ligand also induces the conformational transformation of H(6)L(I). A new L(VI) conformation has been trapped in complexes 4-7 under different conditions. Complex 4 has a 3D microporous supramolecular network constructed from a 2D L(III)-bridged coordination layer structure by pi-pi interactions between the chelating 2,2'-bpy ligands. Complexes 5-7 have different frameworks with L(II)/L(VI) conformations, which were prepared by using different amounts of 4,4'-bpy under similar synthetic conditions. Both 5 and 7 are 3D coordination frameworks involving the L(VI) ligands, while 6 has a 3D microporous supramolecular network constructed from a 2D L(II)-bridged coordination layer structure by interlayer N(4,4'-Hbpy)--HO(L(II)) hydrogen bonds. 3D coordination frameworks 8-11 have been obtained from the H(6)L(I) ligand and the paramagnetic metal ions Mn(II), Fe(II), and Ni(II), and their magnetic properties have been studied. Of particular interest to us is that two copper coordination polymers of the formulae [{Cu(II) (2)(mu(4)-L(II))(H(2)O)(4)}{Cu(I) (2)(4,4'-bpy)(2)}] (12 alpha) and [Cu(II)(Hbtc)(4,4'-bpy)(H(2)O)]3 H(2)O (H(3)btc=1,3,5-benzenetricarboxylic acid) (12 beta) resulted from the same one-pot hydrothermal reaction of Cu(NO(3))(2), H(6)L(I), 4,4'-bpy, and NaOH. The Hbtc(2-) ligand in 12 beta was formed by the in situ decarboxylation of H(6)L(I). The observed decarboxylation of the H(6)L(I) ligand to H(3)btc may serve as a helpful indicator in studying the conformational transformation mechanism between H(6)L(I) and L(II-VI). Trapping various conformations in metal-organic structures may be helpful for the stabilization and separation of various conformations of the H(6)L ligand.  相似文献   

14.
Syntheses and characterizations of a Pd-based molecular triangle and square and hybrid composites with polyoxometalates are examined. The equilibrium between the Pd-based molecular triangle [(en*)Pd(4,4'-bpy)]3(NO3)6 and square [(en*)Pd(4,4'-bpy)]4(NO3)8 largely depends on the solvents, and both compounds have successfully been isolated: [(en*)Pd(4,4'-bpy)]3(NO3)6.3.5DMSO, monoclinic Cc (No. 9), a = 19.8210(2) A, b = 34.3667(5) A, c = 27.5484(4) A, beta = 89.9420(10) degrees , V = 18765.5(4) A3; [(en*)Pd(4,4'-bpy)]4(NO3)8, monoclinic C2/c (No. 15), a = 45.6921(16) A, b = 8.7721(8) A, c = 36.719(3) A, beta = 126.509(2) degrees , V = 11829.4(14) A3. The reactions of the Pd-based molecular triangle/square with [W6O19]2-, [W10O32]4-, and [alpha-SiW12O40]4- form [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]][W6O19]3, [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]](NO3)6, [[(en*)Pd(4,4'-bpy)]4[ supersetW10O32]][W10O32], [(en*)Pd(4,4'-bpy)]4[W10O32]2, and [(en*)Pd(4,4'-bpy)]4[alpha-SiW12O40]2. The molecular square does not encapsulate the largest [alpha-SiW12O40]4-, but it does encapsulate [W6O19]2- and [W10O32]4-. The isolation of [W6O19]2- and [alpha-SiW12O40]4- from the mixture by use of the molecular square is possible by utilizing the quite different solubility of [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]](NO3)6 and [(en*)Pd(4,4'-bpy)]4[alpha-SiW12O40]2 formed in DMSO. The size-selective encapsulation property of supramolecules may open the new way to rationalize isolation methods of the useful polyoxometalates.  相似文献   

15.
Use of 1,4,7,10-tetraazacyclododecane (cyclen) as a capping ligand and 4,4'-bipyridine (4,4'-bpy) as a bridging ligand enables assembly of redox-active Ru3 triangle and Ru4 square complexes. The former is produced by reacting [(cyclen)Ru(DMSO)Cl]Cl with 4,4'-bpy in a 3:1 ethanol:water mixture to precipitate [(cyclen)3Ru3(4,4'-bpy)3]Cl6.18H2O.THF (4), whereas the latter is generated as [(cyclen)4Ru4(4,4'-bpy)4](CF3SO3)8.2CF3SO3H.5MeOH (7) by reacting (cyclen)Ru(CF3SO3)3 with 4,4'-bpy in methanol. The crystal structure of 4.11H2O reveals an equilateral triangle in which the 4,4'-bpy bridges are bowed outward, such that the pyridine rings are all forced to be perpendicular to the Ru3 triangle. Consequently, adjacent pyridine rings are essentially coplanar, and the cyclic voltammogram of [(cyclen)3Ru3(4,4'-bpy)3]6+ in acetonitrile displays three distinct one-electron oxidation events. Cyclic voltammetry measurements reveal redox processes centered at E(1/2) = 0.207, 0.342, and 0.434 V versus Cp2Fe(0/+) that are assigned to 6+/7+, 7+/8+, and 8+/9+ couples of the [(cyclen)3Ru3(4,4'-bpy)3]n+ triangle, respectively. In contrast, the structure of [(cyclen)4Ru4(4,4'-bpy)4]8+ features a regular square geometry wherein the rings of the bridging 4,4'-bpy ligands are free to rotate, leading to just one four-electron oxidation couple centered at 0.430 V. Density functional theory calculations performed on [(cyclen)3Ru3(4,4'-bpy)(3)]6+ reveal metal-based orbitals with contributions from the pi system of the bridging 4,4'-bpy ligands, providing a likely pathway for electron transfer.  相似文献   

16.
Zhang XM  Hao ZM  Wu HS 《Inorganic chemistry》2005,44(21):7301-7303
The cocrystallization of [Cu(SCN)]n chains and [Cu2(4,4'-bpy)(CN)2]n (4,4'-bpy = 4,4'-bipyridine) layers generated a 3-D pseudopolyrotaxane compound, [Cu2(4,4'-bpy)(CN)2].[Cu(SCN)] (1), which can also be viewed as a 3-D network constructed by linkages of 2-D sheets and 1-D chains via unsupported CuI-CuI interactions. The CuI-CuI contact of 2.651(4) A in 1 is the shortest unsupported CuI-CuI distance documented to date, indicating cuprophilic attractions.  相似文献   

17.
Two new phenylmalonate-bridged copper(II) complexes with the formulas [Cu(4,4'-bpy)(Phmal)](n).2nH(2)O (1) and [Cu(2,4'-bpy)(Phmal)(H(2)O)](n)() (2) (Phmal = phenylmalonate dianion, 4,4'-bpy = 4,4'-bipyridine, 2,4'-bpy = 2,4'-bipyridine) have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in monoclinic space group P2(1), Z = 4, with unit cell parameters of a = 9.0837(6) Angstroms, b = 9.3514(4) Angstroms, c = 11.0831(8) Angstroms, and beta = 107.807(6) degrees , whereas complex 2 crystallizes in orthorhombic space group C2cb, Z = 8, with unit cell parameters of a = 10.1579(7) Angstroms, b = 10.3640(8) Angstroms, and c = 33.313(4) Angstroms. The structures of 1 and 2 consist of layers of copper(II) ions with bridging bis-monodentate phenylmalonate (1 and 2) and 4,4'-bpy (1) ligands and terminal monodentate 2,4'-bpy (2) groups. Each layer in 1 contains rectangles with dimensions of 11.08 x 4.99 Angstroms(2), the edges being defined by the Phmal and 4,4'-bpy ligands. The intralayer copper-copper separations in 1 through the anti-syn equatorial-apical carboxylate-bridge and the 4,4'-bpy molecule are 4.9922(4) and 11.083(1) Angstroms, respectively. The anti-syn equatorial-equatorial carboxylate bridge links the copper(II) atoms in complex 2 within each layer with a mean copper-copper separation of 5.3709(8) Angstroms. The presence of 2,4'-bpy as a terminal ligand accounts for the large interlayer separation of 15.22 Angstroms. The copper(II) environment presents a static pseudo-Jahn-Teller disorder which has been studied by EPR and low-temperature X-ray diffraction. Magnetic susceptibility measurements of both compounds in the temperature range 2-290 K show the occurrence of weak antiferromagnetic [J = -0.59(1) cm(-1) (1)] and ferromagnetic [J = +0.77(1) cm(-1) (2)] interactions between the copper(II) ions. The conformation of the phenylmalonate-carboxylate bridge and other structural factors, such as the planarity of the exchange pathway in 1, account for the different nature of the magnetic interaction.  相似文献   

18.
1 INTRUDUCTION The rational design and synthesis of metal-direc- ted supramolecular framework have received much attention in coordination chemistry because of their potential applications in catalysis, molecular selec- tion, non-linear optics, ion exchange and microelec- tronics[1~4]. During the lastdecade, many high-di- mensional coordination complexes have been de- signed and prepared through molecular self-as- sembly process[5~10]. The construction of open metal organic framework, s…  相似文献   

19.
A new cadmium croconate (C5O5(2-)) complex, [Cd2(C5O5)2(4,4'-bpy)(H2O)]infinity (4,4-bpy=4,4'-bipyridine) with an extended network has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction studies. The title compound crystallizes in the monoclinic system, space group P2(1)/n, with empirical formula C20H12Cd2N2O12, a=15.9623(3) A, b=7.5837(1) A, c=18.1181(3) A, beta=99.95(2) degrees, and Z=4. Structural determination reveals that the title compound has a bilayered network, containing two crystallographically independent Cd(II) ions in different coordination environments. Cd(1) lies in a distorted pentagonal bipyramidal environment, consisting of three croconate ions and one 4,4'-bpy nitrogen donor, while Cd(2) lies in a distorted octahedral environment, consisting of two croconate anions, one 4,4'-bpy nitrogen donor, and one water molecule. Of the two crystallographic independent croconate ligands, one presents a bis-bidentate adjacent mu3-coordination mode and the other a new bidentate/three-adjacent mu5-coordination mode. A two-dimensional hybrid layer is formed by two rectangular boxes as the building units through the connectivity between Cd(II) and croconate and 4,4'-bpy ligands.  相似文献   

20.
Zhang J  Li ZJ  Kang Y  Cheng JK  Yao YG 《Inorganic chemistry》2004,43(25):8085-8091
Three novel BPTC complexes, (H(2)BPTC)(4,4'-H(2)bpy)H(2)O (1), [Cd(2)Cu(HBPTC)(2)(mu(2)-4,4'-bpy)(2)(4,4'-bpy)(2)(H(2)O)(2)](n) (2), and [Co(3)(HBPTC)(2)(mu(2)-4,4'-bpy)(3)(H(2)O)(4)](n).2nH(2)O (3) (BPTC = 3,3',4,4'-benzophenone-tetracarboxylate and bpy = bipyridine), were hydrothermally synthesized. Complex 1, which is obtained as a coproduct during the syntheses of complexes 2 and 3, features a 2-D layered strong hydrogen bonding network with 2-fold interpenetration. Complex 2 has an unusual 2-D double-layered motif, which is linked together by Cu atoms in a face-to-face manner. It exhibits nanosized channels filled by 4,4'-bpy ligands. Three six-coordinated Co atoms in 3 are interlinked by HBPTC ligands to form a 2-D grid structure, which is further sustained by rigid 4,4'-bpy ligands into a 3-D open framework similar to CdSO(4) with the BPTC moieties situated in the tunnels. The thermal stabilities of complexes 1-3 were examined. The photoluminescence properties of complexes 1-2 and temperature-dependent magnetic susceptibility for 3 were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号