首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huang LH  Kao HM  Lii KH 《Inorganic chemistry》2002,41(11):2936-2940
A novel vanadium(V) phosphate and the arsenate analogue, [(VO(2))(2)(4,4'-bpy)(0.5)(4,4'-Hbpy)(XO(4))].H(2)O (X = P, As; bpy = bipyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are the first structurally characterized compounds in the vanadium(V)/4,4'-bpy/phosphate (or arsenate) systems. The two compounds are isostructural and crystallize in the triclinic space group P macro (No. 2) with a = 7.9063(3) A, b = 10.2201(4) A, c = 12.1336(5) A, alpha = 113.4652(7) degrees, beta = 95.7231(7) degrees, gamma = 94.4447(7) degrees, and Z = 2 for the phosphate, and a = 7.8843(6) A, b = 10.3686(7) A, c = 12.2606(9) A, alpha = 113.464(1) degrees, beta = 95.560(1) degrees, gamma = 94.585(1) degrees, and Z = 2 for the arsenate. The structure consists of phosphate-bridged vanadium(V) double chains linked through 4,4'-bpy ligands to form a sheet with the monoprotonated 4,4'-Hbpy(+) ligand being coordinated to the metal atom as a pendent group. The (1)H MAS NMR spectrum exhibits four resonances at 14.2, 9.5, 7.2, and 3.7 ppm with an intensity ratio close to 1:6:6:2, corresponding to three different types of protons in 4,4'-bpy and 4,4'-Hbpy(+) and one type of protons in H(2)O. The peak at 14.2 ppm can be assigned to the proton bonded to the pyridine nitrogen atom, which confirms the presence of 4,4'-Hbpy(+).  相似文献   

2.
A general synthetic approach to rationalize the solution preparative chemistry of oxovanadium phosphates containing organic species as structural directing agents is presented. Careful attention is payed to the hydrolysis and condensation processes involving the ionic species in solution, and a simple restatement of the partial charge model (PCM) has been used in order to organize the experimental results. The structure of a new V(IV)-Fe(III) bimetallic oxovanadium phosphate, [H(3)N(CH(2))(2)NH(3)](2)[H(3)N(CH(2))(2)NH(2)] [Fe(III)(H(2)O)(2)(V(IV)O)(8)(OH)(4)(HPO(4))(4)(PO(4))(4)].4H(2)O, has been determined by X-ray single crystal diffraction methods. This compound crystallizes in the monoclinic system, space group P2(1)/n and the cell dimensions are as follows: a = 14.383(3) ?, b = 10.150(2) ?, c = 18.355(4) ?, and beta = 90.39(3) degrees (Z = 2). The existence of a complex intercrossing channel system, including a very large channel of 18.4 ? of diameter (in which both water molecules and ethylenediamine species are located), is the more interesting feature of this structure. Thermal decomposition, including the dehydration/rehydration process, has been studied by thermal analysis and variable temperature X-ray powder diffraction techniques. A complementary SEM study of the different intermediate decomposition products is presented.  相似文献   

3.
4.
Yang W  Lu C 《Inorganic chemistry》2002,41(22):5638-5640
The novel tubular framework of [(V(IV)O)(3)(mu(4)-PO(4))(2)(2,2'-bpy)(mu-OH(2))].1/3H(2)O, which was synthesized from hydrothermal reaction, possesses some attractive structural features: (i) O=V(IV)O(4)(OH(2)) octahedra and PO(4) tetrahedra linked together by corner-sharing and face-sharing into a cylinder-shaped channel including 6 water molecules per cell unit, and (ii) (VO)(2,2'-bpy) groups regularly arranged around the tube, so that the 2,2-bpy ligands constitute an organic shell around an aqueous polar channel.  相似文献   

5.
The mixed-valence cluster compound V4IVV2VO7(OC2H5)12 was studied by X-band electron paramagnetic resonance (EPR) in the temperature range of 4.2-293 K. According to X-ray diffraction study, the crystal structure of the compound was described by a R3m space group at 295 K (four d1 electrons are equally delocalized on all vanadium ions) and changed to a P21/n space group on cooling the crystals to 173 K (the electrons are preferably localized on the four equatorial vanadium ions). The EPR spectra originate from the S = 1 total spin states with the fine structure averaged to a single Lorentzian line and from the S = 2 total spin states with fine structure partly averaged in the temperature range of 295-200 K and well averaged below 45-50 K. The states of S = 1 and S = 2 of comparable energy (DeltaE approximately 2 cm(-1); ES=1 < ES=2) were shown to be the lowest ones. The VIV <--> VV unpaired electron transfers together with isotropic Heisenberg exchange were shown to determine the total spin states composition and the intracluster dynamics of the compound. Two types of electron transfers were assumed: the single-jump transfer leading to the averaged configurations of the V4IVV2V <--> V3IVVV VIVVV type and to the splitting of the total spin states by intervals comparable in magnitude with the isotropic exchange parameter J approximately 100 cm-1 and the double-jump transfer resulting in dynamics. Temperature dependence of the transition rates nutr was observed. In the range of 295-210 K, the value of nutr = (0.5-0.6) x 10(10) s(-1) is sufficient for averaging the fine structure of the S = 1 states, and below 45 K the value of nutr approximately 1.5 x 10(10) s(-1) also averages the fine structure of the S = 2 state. A change in the localization plane of the VIV ions in the temperature range of 40-50 K was discovered.  相似文献   

6.
7.
8.
Zhou D  Chen L  Yu J  Li Y  Yan W  Deng F  Xu R 《Inorganic chemistry》2005,44(12):4391-4397
A new three-dimensional open-framework aluminophosphate (NH(4))(2)Al(4)(PO(4))(4)(HPO(4)).H(2)O (denoted AlPO-CJ19) with an Al/P ratio of 4/5 has been synthesized, using pyridine as the solvent and 2-aminopyridine as the structure-directing agent, under solvothermal conditions. The structure was determined by single-crystal X-ray diffraction and further characterized by solid-state NMR techniques. The alternation of the Al-centered polyhedra (including AlO(4), AlO(5), and AlO(6)) and the P-centered tetrahedra (including PO(4) and PO(3)OH) results in an interrupted open-framework structure with an eight-membered ring channel along the [100] direction. This is the first aluminophosphate containing three kinds of Al coordinations (AlO(4), AlO(5), and AlO(6)) with all oxygen vertexes connected to framework P atoms. (27)Al MAS NMR, (31)P MAS NMR, and (1)H --> (31)P CPMAS NMR characterizations show that the solid-state NMR techniques are an effective complement to XRD analysis for structure elucidation. Furthermore, all of the possible coordinations of Al and P in the aluminophosphates with an Al/P ratio of 4/5 are summarized. Crystal data: (NH(4))(2)Al(4)(PO(4))(4)(HPO(4))xH(2)O, monoclinic P2(1) (No. 4), a = 5.0568(3) A, b = 21.6211(18) A, c = 8.1724(4) A, beta = 91.361(4) degrees , V = 893.27(10) A(3), Z = 2, R(1) = 0.0456 (I > 2 sigma(I)), and wR(2) = 0.1051 (all data).  相似文献   

9.
The reactions of a Cu(II) salt, MoO(3), and the appropriate bipyridine ligand yield a series of bimetallic oxides, [Cu(3,4'-bpy)MoO(4)] (1), [Cu(3,3'-bpy)(0.5)MoO(4)] (2), and [Cu(4,4'-bpy)(0.5)MoO(4)].1.5H(2)O (3.1.5H(2)O). The structures of 1-3 exhibit three-dimensional covalent frameworks, constructed from bimetallic oxide layers tethered by the dipodal organoimine ligands. However, the [CuMoO(4)] networks are quite distinct. For structure 1, the layer consists of corner-sharing [MoO(4)] tetrehedra and [CuN(2)O(3)] square pyramids, while the layer of 2 is constructed from [MoO(4)] tetrehedra and binuclear [Cu(2)O(6)N(2)] units of edge-sharing copper square pyramids. The oxide substructure of 3 consists of [MoO(4)] tetrahedra corner-sharing with tetranuclear clusters of edge-sharing [CuO(5)N] octahedra. Crystal data: C(10)H(8)N(2)O(4)CuMo (1), orthorhombic Pbca, a = 12.4823(6) A, b = 9.1699(4) A, c = 19.5647(9) A, V = 2239.4(1) A(3), Z = 8; C(5)H(4)NO(4)CuMo (2), triclinic P, a = 5.439(1) A, b = 6.814(1) A, c = 10.727(2) A, alpha = 73.909(4)(o), beta = 78.839(4)(o); gamma = 70.389(4)(o); V = 357.6(1) A(3), Z = 2; C(10)H(8)N(2)O(8)Cu(2)Mo(2).3H(2)O 3.1.5H(2)O, triclinic P, a = 7.4273(7) A, b = 9.2314(8) A, c = 13.880(1) A, alpha = 71.411(2)(o), beta = 88.528(2)(o), gamma = 73.650(2)(o), V = 863.4(1) A(3), Z = 2. The magnetic properties of 1-3 arise solely from the presence of the Cu(II) sites, but reflect the structural differences within the bimetallic oxide layers. Compound 1 exhibits magnetic behavior consistent with ferromagnetic chains which couple antiferromagnetically at low temperature. Compound 2 exhibits strong antiferromagnetic dimeric interactions, with the magnetic susceptibility data consistent with the Bleaney-Bowers equation. Similarly, the magnetic susceptibility of 3 is dominated by antiferromagnetic interactions, which may be modeled as a linear S = 1/2 Heisenberg tetramer.  相似文献   

10.
The structure of a novel mixed-valent chromium uranyl compound, (C(3)NH(10))(10)[(UO(2))(13)(Cr(12)(5+)O(42))(Cr(6+)O(4))(6)(H(2)O)(6)](H(2)O)(6) (1), obtained by the combination of a hydrothermal method and evaporation from aqueous solutions with isopropylammonium, contains uranyl chromate hemispheres with lateral dimensions of 18.9 × 18.5 ?(2) and a height of about 8 ?. The hemispheres are centered by a UO(8) hexagonal bipyramid surrounded by six dimers of Cr(5+)O(5) square pyramids, UO(7) pentagonal bipyramids, and Cr(6+)O(4) tetrahedra. The hemispheres are linked into two-dimensional layers so that two adjacent hemispheres are oriented in opposite directions relative to the plane of the layer. From a topological point of view, the hemispheres have the formula U(21)Cr(23) and can be considered as derivatives of nanospherical cluster U(26)Cr(36) composed of three-, four-, and five-membered rings.  相似文献   

11.
This study addresses, in detail, the orbital nature and the extent of metal-metal communication in the lowest emitting triplet state of Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) (where 4,4'-bpy = 4,4'-bipyridine) as well as the symmetry of the lowest (3)MLCT manifold in comparison to that of the ground state. All spectral evidence points to (1). a (3)MLCT excited manifold localized between a single Re(I) corner and an adjacent bridging ligand, (2). a transient mixed-valence state that is completely localized between a single transiently oxidized Re center and the adjacent metals, and (3). a second-order charge transfer from a localized transiently reduced bridging ligand to the adjacent Re(I) center to which it is attached, effectively lowering its oxidation state. The orbital nature of the lowest (3)MLCT manifold is fully corroborated by a molecular orbital diagram derived from quantum chemical modeling studies, while the existence of the localization, localized mixed valency, and second-order charge transfer rely on spectral evidence alone. This work makes use of low-temperature time-resolved infrared (TRIR) techniques as well as a luminescence study. Many of the nuances of the luminescence and TRIR data interpretation are extracted from statistical analysis and quantum chemical modeling studies. The relative concentrations of the dominant conformers that exist for Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) have also been estimated from Boltzmann statistics.  相似文献   

12.
Wang CM  Liao CH  Kao HM  Lii KH 《Inorganic chemistry》2005,44(18):6294-6298
A mixed-metal uranyl aquofluoride, [(UO2)2F8(H2O)2Zn2(4,4'-bpy)2].(4,4'-bpy), has been synthesized under hydrothermal conditions and has been structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, emission spectroscopy, and solid-state NMR spectroscopy. It is one of the few uranium fluoride-organic framework solids in which an organic molecule is directly incorporated into the extended structure of the metal fluoride and is the first example of mixed-metal uranium oxyfluoride incorporating an organic ligand. The structure consists of neutral layers of edge- and corner-sharing uranium-centered pentagonal bipyramids and zinc-centered octahedra, which are linked through 4,4'-bpy ligands into a 3-D framework. The 1H MAS NMR spectrum is in support of the conclusion that the occluded 4,4'-bpy molecules in the structural channels are not protonated. Crystal data: monoclinic, space group P2(1)/c, a = 9.4630(5) A, b = 22.384(1) A, c = 16.7534(8) A, beta = 91.899(2) degrees , V = 3546.7(4) A(3) and Z = 4.  相似文献   

13.
Zhang XM  Hou JJ  Zhang WX  Chen XM 《Inorganic chemistry》2006,45(20):8120-8125
Two isostructural mixed-valence vanadium phosphonoacetates H2(DABCO)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (1) and H2(PIP)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (2) have been synthesized. They crystallize in the orthorhombic space group Pnna with a = 7.0479(10) A, b = 15.307(2) A, and c = 17.537(3) A for 1 and a = 7.0465(9) A, b = 15.646(2) A, and c = 17.396(2) A for 2. X-ray single-crystal diffraction reveals that 1 and 2 have a three-dimensional open framework featuring 16-ring ellipsoid channels that are filled with doubly protonated 1,4-diazabicyclo[2,2,2]octanium/piperazinium cations and water molecules. According to the classification in metal-organic frameworks, 1 and 2 contain infinite (-O-V-)(infinity) chains that are cross-linked by "metalloligand" [VO(H2O)(O3PCH2CO2)2](4-) into a 3-D net of the sra topology. The temperature dependence of the magnetic susceptibility of 1 shows that the chi(m)T value in the range of 60-320 K is constant of 1.105 cm3 K mol(-1)/V2 unit, and upon further cooling, the chi(m)T value rapidly increases to 1.81 cm3 K mol(-1) at 2 K. The corresponding effective magnetic moment (mu(eff))/V2 unit varies from 2.97 mu(B) at 320 K to 3.80 mu(B) at 2 K. The magnetic data in the range of 2-320 K follow the Curie-Weiss law with C = 1.074 cm3 K mol(-1) and Theta= -1.34 K.  相似文献   

14.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

15.
The [3 + 1] reaction of [W(3)S(4)(H(2)O)(9)](4+) with [W(CO)(6)] in 2 M HCl under hydrothermal conditions (130 degrees C) gives the [W(4)S(4)(H(2)O)(12)](6+) cuboidal cluster, reduction potential 35 mV vs NHE (6+/5+ couple). The reduced form is obtained by controlled potential electrolysis. X-ray crystal structure was determined for (Me(2)NH(2))(6)[W(4)S(4)(NCS)(12)].0.5H(2)O. The W-W and W-S bond lengths are 2.840 and 2.379 A, respectively.  相似文献   

16.
Shi Z  Li G  Zhang D  Hua J  Feng S 《Inorganic chemistry》2003,42(7):2357-2361
A novel vanadium(IV) phosphite, (VO)(4)(4,4'-bpy)(2)(HPO(3))(4), was hydrothermally synthesized and characterized by single-crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a = 35.970(3) A, b = 15.9400(13) A, c = 10.7681(7) A, beta = 101.073(4) degrees, and Z = 8 with R(1) = 0.0482. The structure of the compound consists of trigonal bipyramidal [VO(4)N] and pseudopyramidal [HPO(3)] blocks, which are connected by corner-sharing, to form vanadium phosphite layers in the bc plane. These layers are further linked through 4,4'-bpy pillars, generating a 3D framework. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

17.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

18.
19.
The infrared spectra of the oxodiperoxo and triperoxo complexes, (NH4)[VO(O2)2(phen)].2H2O and (NH4)[V(O2)3(phen)].2H2O have been recorded and the observed bands are assigned on the basis of Cs symmetry. Thermogravimetric (TG) and differential thermal analysis (DTA) measurements on these two complexes were also carried out. A detailed mechanism for the mode of thermal decomposition of the two complexes has been given and supported by infrared spectral measurements on the thermal decomposition products. The data obtained agree quite well with the expected structure and indicate that the final thermal decomposition product of these two complexes is V2O5.  相似文献   

20.
(H(3)O)(2)[V(4)(HPO(4))(PO(4))(3)O(6)F](2)[NC(7)H(14)](6) (labeled ULM-17) has been hydrothermally synthesized (150 degrees, 24 h, autogeneous pressure). It is monoclinic (space group P2(1)/c (No. 14)) with a = 21.4747(6) ?, b = 17.7223(5) ?, c = 20.1616(6) ?, beta = 94.329(1) degrees, and Z = 4. The structure consists in the hexagonal close packing of discrete hydronium cations, protonated quinuclidine and molecular anions [V(4)(HPO(4))(PO(4))(3)O(6)F](4)(-) (1) The structure presents two kinds of octameric anions built up from the tetrahedral arrangement of V(V)O(5)F octahedra sharing edges and vertices, capped by phosphorus tetrahedra. The stability of the solid is ensured via strong hydrogen bonds between the oxygens of the polyanions and the hydrogens of both hydronium and quinuclidinium cations. The particuliar location of fluorine at the center of the molecular anion 4-fold coordinated by V(V) was studied by solid state NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号