首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generation of ultrasound in film–substrate system by a laser line source is studied in the case of ablation mechanism, which can be realized by adding a liquid layer at the excitation point. The time domain displacement can be yielded by the numerical jointed inversed Laplace–Fourier transformation technique. The typical surface acoustic waves (SAW) of two layer structures, slow film on fast substrate and fast film on slow substrate, are obtained and the effect of the propagation distance and the thickness of the film on the SAW are given.  相似文献   

2.
Jang TS  Lee JJ  Yoon DJ  Lee SS 《Ultrasonics》2002,40(1-8):803-807
A high powered Q-switched Nd:YAG laser was used to excite the surface waves, and an optical fiber sensor was used to detect the out-of-plane displacements due to the propagating waves. This sensor is based on the fiber optic Sagnac interferometer, which has the path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence in an optical path using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. The performance of the fiber optic Sagnac interferometer was investigated, and laser-generated surface wave signals were detected using this fiber optic sensor. The developed fiber optic sensor configured in this study is very simple and is effective for non-contact detection of ultrasonic waves.  相似文献   

3.
The optimum finite element model in the system consisting of a transparent coating and an opaque substrate is established based on the analysis of two important parameters: meshing size and time step, and the stability of solution. Taking into account the temperature dependence of material properties, the transient temperature and temperature gradient field are obtained. According to the thermoelastic theory, this temperature gradient field can be taken as a buried bulk source to generate ultrasonic wave. The surface acoustic waves (SAWs) are obtained. The influence of the coating thickness on the SAWs is analyzed. The model provides a useful tool for the determination of modes which are generated by a laser source in transparent coating on opaque substrate. The surface skimming longitudinal wave exists for the multiple oscillations and it charges from unipolar waveforms to dipolar.  相似文献   

4.
Qin Qin 《Applied Acoustics》2004,65(4):325-340
When a high-power laser beam is focused at a point, the air at the focal point is heated to temperatures of thousands of degrees within several nanoseconds and breaks down. This generates a spark that, in turn, is accompanied by an acoustic shock wave. The acoustic shock waves generated by focussing the beam from a pulsed laser with a 1064 nm wavelength and a power of 800 mJ per pulse have been measured using 1/4″ and 1/8″ B&K microphones. Nonlinear sound levels are observed up to 1.5 m from the laser-induced sparks. Beyond a certain region close to the source, levels are found to decrease in a manner consistent with spherical spreading plus nonlinear hydrodynamic losses. Analysis of the waveforms shows that the acoustic pulses associated with the laser-induced sparks are more repeatable and have higher intensity than those from an electrical spark source. Laser-generated acoustic shock waves are ideal for simulating a blast wave or a sonic boom in the laboratory and for studying the associated propagation effects. To illustrate this application, the propagation of the laser generated shock waves over a series of different hard, rough surfaces has been investigated. The results show the distinctive influences of ground roughness on the propagation of the shock wave.  相似文献   

5.
We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.  相似文献   

6.
7.
The diffusion of an adatom on a substrate submitted to a standing surface acoustic wave is theoretically studied. By performing large scale molecular dynamic simulations, we show that the wave dynamically structures the substrate by encouraging the presence of the adatom in the vicinity of the maximum displacements of the substrate. Using an analytical model, we explain this feature introducing an effective potential induced by the wave. Applied in an atomic deposition experiment, this dynamic structuring process should govern the nucleation sites distribution opening the route to accurately control the self-organization process at the nanoscale.  相似文献   

8.
Two-dimensional (2D) metal–organic framework (MOF) nanosheets have recently received extensive attention due to their ultra-thin thickness, large specific surface area, chemical and functional designability. In this study, an unconventional method using surface acoustic wave (SAW) technology is proposed to exfoliate large quantities and uniform layers of 2D MOF-Zn2(bim)4 nanosheets in a microfluidic system. We successfully demonstrated that the thickness of 2D MOF is effectively and accurately controlled by optimizing the SAW parameters. The mechanisms for the efficient exfoliation of 2D MOF nanosheets is attributed to both the electric and acoustic fields generated by the SAWs in the liquid. The electric field ionizes the methanol to produce H+ ions, which intercalate Zn2(bim)4 sheets and weaken the interlayer bonding, and the strong shear force generated by SAWs separates the MOF sheets. A yield of 66% for monolayer MOFs with a maximum size of 3.5 μm is achieved under the combined effect of electric and acoustic fields. This fast, low-energy exfoliation platform has the potential to provide a simple and scalable microfluidic exfoliation method for production of large-area and quantities of 2D MOFs.  相似文献   

9.
Sound propagation along an inhomogeneous solid-vacuum interface is considered. The frequency-wavenumber relation has been obtained for the transverse-polarized surface wave and the range of existence of this wave has been analyzed. The surface roughness is shown to produce additional damping.  相似文献   

10.
Surface acoustic wave (SAW) waveguide resonator is formed by a ring-shaped strip of copper 10 μm wide and ∼130 μm in diameter embedded into a 0.8 μm thick layer of silica on a silicon wafer. SAWs are excited at one side of the copper ring by a short laser pulse focused into a spatially periodic pattern and detected via diffraction of the probe laser beam overlapped with the excitation spot. SAW wavepackets with central frequency 460 MHz travel around the ring and are detected each time they make a full circle and pass trough the probe spot. Potential applications of ring resonators for SAWs are discussed.  相似文献   

11.
《Surface science》1986,172(3):525-532
Piezoelectricity introduces new modes and modifies part of the elastic vibrational spectrum for both bulk and surface waves. This has a direct bearance on surface thermodynamics. A simple phenomenological model is studied analytically and exactly. This bears out the basic physics involved and allows for a quick and easy estimate of the changes to be expected, which turn out to be substantial.  相似文献   

12.
We demonstrate the manipulation of microcavity polaritons using tunable one-dimensional potentials formed by non-piezoelectric surface acoustic waves (SAWs). We compare the modulation of polaritons by piezoelectric and non-piezoelectric SAWs and show that the latter outperform the former for high acoustic powers. We directly show the formation of mini-Brillouin zones due to the lateral modulation with the periodicity of the SAW as well as the flattening of the lowest dispersion curve due to polariton confinement, showing the formation of polariton wires.  相似文献   

13.
The sorption processes in a piezoelectric-molecularly imprinted polymer film structure, where the polymer is synthesized from the monomers of bisphenol-A glycerolate diacrylate using imprinted morpholine molecules as template molecules, are experimentally studied with Rayleigh surface acoustic waves at a frequency of 120 MHz. The desorption processes for morpholine are found to be anomalously slow as compared to other analytes under study. The possibility of the application of the results obtained for creating selective chemical sensors based on surface acoustic waves is discussed.  相似文献   

14.
This paper presents a novel principle for photovoltaic (PV) energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. A SAW produces a periodically modulated electric potential, which spatially segregates photoexcited electrons and holes to the maxima and minima of the SAW potential. The moving SAW collectively transports the carriers with the speed of sound to the electrodes made of different materials, which extract electrons and holes separately and generate dc output. The proposed active design is expected to have higher efficiency than passive designs of the existing PV devices and to produce enough energy to sustain the SAW.  相似文献   

15.
We describe the first practical realization of a cylindrical cloak for linear surface liquid waves. This structured metamaterial bends surface waves radiated by a closely located acoustic source over a finite interval of Hertz frequencies. We demonstrate theoretically its unique mechanism using homogenization theory: the cloak behaves as an effective anisotropic fluid characterized by a diagonal stress tensor in a cylindrical basis. A low azimuthal viscosity is achieved, where the fluid flows most rapidly. Numerical simulations demonstrate that the homogenized cloak behaves like the actual structured cloak. We experimentally analyze the decreased backscattering of a fluid with low viscosity and finite density (methoxynonafluorobutane) from a cylindrical rigid obstacle surrounded by the cloak when it is located a couple of wavelengths away from the acoustic source.  相似文献   

16.
The emission of Gulyaev-Bleustein surface acoustic waves is considered for the case when a charged filament crosses the vacuum-piezocrystal interface. The correspondent energy losses are compared with such accompanying excitation of volume waves.  相似文献   

17.
A method for the numerical modeling and visualization of the diffraction of surface acoustic waves propagating in anisotropic crystals is described. Examples of two-dimensional wave energy distributions are presented for some crystal orientations widely used in acoustoelectronics.  相似文献   

18.
曾伟  王海涛  田贵云  胡国星  汪文 《物理学报》2015,64(13):134302-134302
根据激光激发声表面波的热弹运动方程及热传导方程, 采取有限元技术对方程进行求解, 得到声表面波传播波形图. 当声表面波经过近表面缺陷时, 声表面波与近表面缺陷之间产生一种振荡效应, 通过近表面缺陷的振荡波形幅值存在一个逐渐增加后又逐渐减小的过程. 当声表面波经过不同深度的近表面缺陷时, 振荡信号中心频率存在一定的变化规律. 数值仿真结果表明: 当近表面缺陷深度从0.1 mm到0.5 mm变化时, 振荡效应产生的振荡信号中心频率从0.4 MHz到0.76 MHz变化, 振荡信号中心频率与近表面缺陷深度呈近似线性关系, 这为近表面缺陷的定量检测提供了一种理论基础.  相似文献   

19.
The first theoretical investigation of the amplitudes of the narrow band current oscillations generated by sliding charge density waves is given using the stochastic classical model with a current noise source. In contrast to the classical model without fluctuations, the power spectrum S(ω) of the current-current correlation function has finite peaks S2n and non- vanishing line widths Γn near ω = nωosc where ωosc is the fundamental frequency of the current oscillations. For weak current noise, analytical expressions for sn and Γn are given which agree with the exact numerical treatment of S(ω) using the Fokker-Planck approach. The results are in accord with the observed asymptotic decrease of the fundamental amplitude s1 with increasing d.c. bias. They also confirm the validity of the weak noise limit for sliding charge density waves.  相似文献   

20.
An experimental scheme for a quantum simulator of strongly correlated electrons is proposed. Our scheme employs electrons confined in a two-dimensional electron gas in a GaAs/AlGaAs heterojunction. Two surface acoustic waves are then induced in the substrate, creating a two-dimensional "egg-carton" potential. The dynamics of the electrons in this potential are described by a Hubbard model with long-range Coulomb interactions. Estimates of the Hubbard parameters suggest that observations of quantum phase transition phenomena are within experimental reach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号