首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni掺杂浓度对硅纳米线光电性质的影响   总被引:1,自引:1,他引:0  
利用基于密度泛函理论的第一性原理,对不同直径和浓度Ni掺杂硅纳米线的形成能、能带结构、态密度和光学性质进行了计算,结果表明:杂质Ni的形成能随硅纳米线直径的减小和掺杂浓度的降低而下降,这说明直径越大的硅纳米线掺杂越困难,杂质浓度越高的硅纳米线越不稳定. Ni掺杂在费米能级附近及带隙中引入杂质能级,其主要来自Ni的3d轨道,杂质能级扩展成杂质带,改变Ni的掺杂浓度可改变硅纳米线的带隙,改善其导电性. 另外,还发现掺杂浓度明显改变了硅纳米线的吸收强度和宽度.  相似文献   

2.
Changes in structural, electrical and electronic properties of zinc oxide (ZnO) due to Al doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. A periodic supercell of 128 atoms has been exploited throughout the study. The atomic parameters for Zn atom were obtained by reproducing the main properties of ZnO crystal as well as the first three ionization potentials of Zn atom. The perturbation imposed by Al atom incorporation leads to the atomic relaxation, which is computed and discussed in detail. A novel effect of electron density redistribution between different atomic orbitals within the same atom has been found. This phenomenon influences atomic rearrangement near Al impurity. The Al doping generates a free electron in the conduction band, which can be considered as a large radius electron polaron increasing the n-type electrical conductivity in the crystal in agreement with the known experimental data. The obtained small increase in the band-gap width due to the impurity incorporation resolves existing experimental debates on this point.  相似文献   

3.
利用基于密度泛函理论的第一性原理,对不同浓度Er掺杂Si纳米晶粒的结构稳定性、电子和光学性质进行了研究.结果表明: Si纳米晶粒中Er掺杂浓度越低,结构越稳定;Er掺杂后的Si纳米晶粒引入了杂质能级,导致禁带宽度变窄;掺杂后的Si纳米晶粒在低能区出现了一个较强的吸收峰,随着浓度的降低,吸收峰峰值逐渐减小,甚至消失. 这为Si基发光材料的设计提供了理论依据. 关键词: Si纳米晶粒 掺杂 电子结构 光学性质  相似文献   

4.
基于密度泛函理论的第一性原理方法,本文旨在探索确定绝缘体-金属转变临界浓度的理论计算方法.以Co重掺杂Si为研究对象,构建并计算了10个Co不同掺杂浓度模型的晶体结构、杂质形成能及其电子性质.发现在Co掺杂Si体系的带隙中形成了杂质能级,杂质能级的位置和宽度随着Co浓度的增加呈线性变化.当Co掺杂浓度较高时杂质形成能逐渐稳定,且杂质能级穿过费米能级使体系表现出金属性.综合杂质形成能的变化趋势,以及杂质能级极小值与费米能级间的距离条件,可预测出发生绝缘体-金属转变的Co掺杂浓度为2.601Wingdings 2MC@10~(20) cm~(-3),与实验结果相一致.上述两条依据应用于S重掺杂Si体系和Se重掺杂Si体系同样成立.  相似文献   

5.
Single crystal germanium nanowires have been grown by vapour-liquid-solid deposition onto silicon oxide substrates with Au catalyst nanoparticles. They have been doped by two different techniques: Ge and Mn co-evaporation during growth and post-growth Mn implantation. Scanning electron microscopy images show that Mn-implanted nanowires have a lower surface density and a smaller average diameter (18.8 nm) than the un-doped ones and those Mn doped by co-deposition. The effectiveness of Mn doping has been verified by X-ray photoemission spectroscopy and by energy-dispersive X-ray measurements, indicating in the two cases significant Mn atomic concentration in the nanowire. X-ray diffraction indicates that the nanowires are single crystals and that they do not contain precipitates of Mn extrinsic phases. Both SEM and XPS experimental evidences are in line to indicate that the Mn doping by ion implantation is preferable with respect to that one performed by co-evaporation as it reduces the thickness of the outer oxide sheath of the nanowires and their diameter.  相似文献   

6.
A high-concentration in-situ phosphorus-doping technique for silicon low-temperature epitaxial growth with Si2H6 has been developed. Growth temperature has an impact on the crystal quality and on lattice strain of phosphorus-doped silicon layers. Resistivity, micro-Raman spectroscopy, and high-resolution X-ray diffraction indicated that good crystal quality was achieved at a growth temperature of 525 °C. On the other hand, growth pressure has little influence on crystal quality or on lattice strain except for surface morphology. By optimizing epitaxial growth conditions, an extremely high concentration of phosphorous doping was achieved without a high-temperature activation annealing, and the resultant good crystal quality of the phosphorus-doped silicon layer gave a very low resistivity. Accordingly, the high-concentration in-situ phosphorus doping is a powerful technique to fabricate future ultra-high-speed SiGe HBTs.  相似文献   

7.
We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.  相似文献   

8.
An electrostatic model describing the dependence of the thermal ionization energy of impurities on their concentration, compensation factor, and temperature is developed. The model takes into account the screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron) affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal. The results of the numerical study are in agreement with the decrease in the ionization energy that is experimentally observed for moderately compensated Ge: Ga as the temperature and the doping level are decreased. It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maximum at small compensation factors.  相似文献   

9.
 利用“点籽晶”快速生长技术生长了掺杂硫酸钾(K2SO4)的磷酸二氢钾(KDP)晶体,并对硫酸根类杂质离子对晶体的结构及光学质量的影响进行了研究。结果表明:在掺杂相对含量为50×10-6条件下,K2SO4开始对KDP晶体产生一定影响,主要表现在不同扇形区域的结构略有改变,其原因主要在于硫酸根与KDP晶体各扇形结构有关;杂质粒子对晶体透过率、单轴性没有明显影响,但是热膨胀系数增大,光损伤阈值略有降低。  相似文献   

10.
高温氧化是限制钒合金应用的主要原因之一。利用第一性原理计算了Ti、Cr杂质原子掺入钒基体后,O在钒合金中的杂质形成能的变化。结果表明:O杂质原子在钒中占据八面体间隙位更稳定,且杂质形成能为-4.65eV,Ti掺杂会降低O的杂质形成能,使O在晶体内部扩散更容易,Cr掺杂的情况与Ti掺杂相反。并且还计算了体系电子结构、布局分布和电荷密度,进一步分析所得到的结论与杂质形成能的计算结果一致。  相似文献   

11.
高温氧化是限制钒合金应用的主要原因之一。利用第一性原理计算了Ti、Cr杂质原子掺入钒基体后,O在钒合金中的杂质形成能的变化。结果表明:O杂质原子在钒中占据八面体间隙位更稳定,且杂质形成能为-4.65eV,Ti掺杂会降低O的杂质形成能,使O在晶体内部扩散更容易,Cr掺杂的情况与Ti掺杂相反。并且还计算了体系电子结构、布局分布和电荷密度,进一步分析所得到的结论与杂质形成能的计算结果一致。  相似文献   

12.
侯清玉  董红英  迎春  马文 《物理学报》2013,62(3):37101-037101
采用密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了未掺杂与不同浓度的Mn原子取代Zn原子的三种Zn1-xMnxO超胞模型, 分别对模型进行了几何结构优化、态密度分布、能带分布和吸收光谱的计算. 结果表明: 电子非自旋极化处理的条件下, Mn掺杂浓度越小, ZnO形成能越小, 掺杂越容易, 晶体结构越稳定; Mn的掺入使得ZnO体系的杂质能带和导带发生简并化, 并且导带底和价带底同时向低能方向移动, 掺杂后的导带比价带下降得少导致禁带宽度变宽, ZnO吸收光谱明显出现蓝移现象, 计算结果和实验结果相一致. 同时, 电子自旋极化处理的条件下, 体系有磁性, 吸收光谱发生红移现象. 计算结果与相关实验结果相符合.  相似文献   

13.
利用基于密度泛函理论的第一性原理计算,对镍掺杂硅纳米线的结构稳定性、电子与光学性质进行了研究.结果表明:Ni容易占据硅纳米线表面的替代位置.镍掺杂后的硅纳米线引入了杂质能级,杂质能级主要来源于Ni的3d电子的贡献.由于Ni的3d态和Si的3p态的耦合作用,使禁带宽度变窄.掺杂后的硅纳米线在低能区出现了一个较强的吸收峰,且吸收带出现宽化现象. 关键词: 硅纳米线 掺杂 电子结构 光学性质  相似文献   

14.
The self-interstitial in silicon is studied as function of its position in between the tetrahedral and the hexagonal sites with the large-unit-cell pseudopotential method. The energy level scheme of the impurity stems from the interaction between the atomic orbitals of the interstitial and nearest-neighbour host crystal bonding orbitals. The striking changes in electronic structure along the path are not due to a variation of the impurity potential but rather to that of the host crystal environment.  相似文献   

15.
李东临  曾一平 《中国物理》2006,15(11):2735-2741
We have carried out a theoretical study of double-5-doped InAlAs/InGaAs/InP high electron mobility transistor (HEMT) by means of the finite differential method. The electronic states in the quantum well of the HEMT are calculated self-consistently. Instead of boundary conditions, initial conditions are used to solve the Poisson equation. The concentration of two-dimensional electron gas (2DEG) and its distribution in the HEMT have been obtained. By changing the doping density of upper and lower impurity layers we find that the 2DEG concentration confined in the channel is greatly affected by these two doping layers. But the electrons depleted by the Schottky contact are hardly affected by the lower impurity layer. It is only related to the doping density of upper impurity layer. This means that we can deal with the doping concentrations of the two impurity layers and optimize them separately. Considering the sheet concentration and the mobility of the electrons in the channel, the optimized doping densities are found to be 5 × 10^12 and 3× 10^12 cm^-2 for the upper and lower impurity layers, respectively, in the double-5-doped InAlAs/InGaAs/InP HEMTs.  相似文献   

16.
Potential applications of electron paramagnetic resonance (EPR) for investigating and controlling the process of neutron transmutation doping (NTD) of semiconducting germanium, silicon, and silicon carbide are discussed. It is shown that EPR enables one to control the process of annealing of radiation-induced defects in semiconductors subject to neutron irradiation and to detect the shallow donors restored in the process of annealing of donor-compensating defects by observing EPR signals from these donors. EPR can be used to separately detect isolated donors and clusters of two, three, and more exchange-bound donor atoms and thereby determine the degree of nonuniformity of the impurity distribution over the crystal. Neutron transmutation doping is demonstrated to produce a fairly uniform arsenic-donor distribution in a germanium crystal. It is argued that semiconductors enriched in the selected isotopes should be used for NTD. The results of an investigation of phosphorus donors in silicon carbide are presented.  相似文献   

17.
An ab initio DFT study of atomic and electronic structure of carbyne crystals was carried out. The influence of hydrogen impurities on carbyne structure was investigated. Calculations with atomic relaxations showed that carbon chains in the carbyne crystal structure are bow-like curved; free-energy calculations showed that the most probable lengths of those chains are four and six atoms, which is in a good agreement with experiments. Carbyne-crystal electronic-structure analysis showed that there is a small gap of 0.09 eV near the Fermi level in four-atomic carbyne, while there is no such gap in six-atomic carbyne. In studying of the hydrogen impurity influence on the atomic and electronic structure of carbyne crystals, hydrogen atoms were embedded in two directions: across and along carbon chains in the crystal. As a result we found that the crystal structure is not distorted in the case of hydrogen embedded across the chains, while the type of bonding between carbon atoms in carbon chains in the carbyne crystal structure depended on the impurity concentration. The crystal structure was distorted when hydrogen was embedded along the chains. The concentration of impurities influences the conductivity of a carbyne crystal.  相似文献   

18.
姚杰  陈宝琼  王宏楷 《物理学报》1985,34(1):117-120
本文研究了p型硅单晶用红宝石脉冲激光辐照之后向n型转化的效应。这个效应与补偿杂质有关。实验结果表明:脉冲激光辐照之后补偿杂质浓度增加,补偿杂质磷分布发生变化,杂质补偿度大于7%的样品在被激光辐照的区域较容易转变为n型导电。这个效应与硅单晶中氧含量、晶面和晶体生长方式无关。 关键词:  相似文献   

19.
唐景昌  陈一兵 《计算物理》1987,4(3):307-316
本文利用SCF-Xα-SW原子集团(Cluster)方法研宄了半导体硅中杂质的电子结构。研究表明,硅中杂质电子态与Cluster中原子球半径的选取密切相关。本文提出两条原则来确定原子球的半径:1)调节Cluster中基质原子球的半径大小应以晶体能带结构的特点为标准,2)Cluster总能量极小原理可以精确决定杂质原子球的半径。对硅中浅杂质锑和深杂质钯的电子结构计算表明上述原则是正确的。  相似文献   

20.
以n型单晶Si(111)为衬底,利用Au作为催化剂,在温度、N2流量和生长时间分别为1 100 ℃,1.5 L·min-1和60 min的条件下,基于固-液-固生长机制,生长了直径为60~80 nm、长度为数十微米的高密度Si纳米线。随后,以Y2O3粉末为掺杂源,采用高温扩散方法对Si纳米线进行了钇(Y)掺杂。利用扫描电子显微镜、X射线衍射仪和荧光分光光度计对不同掺杂温度(900~1 200 ℃)、掺杂时间(15~60 min)和N2流量(0~400 sccm)等工艺条件下制备的Y掺杂Si纳米线的形貌、成分、结晶取向以及激发光谱和发射光谱特性进行了详细的测量和表征。结果表明,在掺杂温度为1 100 ℃,N2流量为200 sccm、掺杂时间为30 min和激发波长为214 nm时,Y掺杂Si纳米线样品表现出较好的发光特性。样品分别在470~500和560~600 nm范围内出现了两条发光谱带。560~600 nm的发光带由两个发光峰组成,峰位分别为573.6和583.8 nm,通过结构分析可以推测,这两个发光峰是由Y3+在Si纳米线的带隙中引入的杂质能级引起的。而470~500 nm较宽的发光带同样来源于Y离子在Si纳米线带隙中引入的与非晶SiOx壳层中氧空位能级十分接近的杂质能级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号