首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The galvanostatic intermittent titration technique is used to study lithium transport in the LiM y Mn2 − y O4 compounds with a spinel structure intended for application as cathodic materials in lithium-ion and lithium-polymer batteries. Equilibrium intercalation isotherms of the Li x Mn2O4 and Li x Mn1.95Cr0.05O4 compounds and also their diffusion characteristics are determined at 25°C as dependent on lithium content x, 0 < x < 1. The diffusion coefficient of lithium varies in a complex way in the range of 10−10 to 10−12 cm2/s under variation of the electrode composition.  相似文献   

2.
The potentiostatic intermittent titration technique is used to study lithium transport in the LiM yMn2 − y O4 compounds with a spinel structure intended for application as cathodic materials in lithiumion and lithium-polymer batteries. The materials are synthesized using the sol-gel method and the melt-impregnation method. Kinetic and diffusion characteristics of the Li x Mn2O4 and Li x Mn1.95Cr0.05O4 compounds are determined at 25°C as dependent on lithium content 0 < x < 1. The diffusion coefficient of lithium varies significantly in the range of 10−10 to 10−13 cm2/s under variation of the electrode composition; the surface resistance depends weakly on the concentration of lithium and is 200–500 Ohm cm2.  相似文献   

3.
用溶胶-凝胶法合成出尖晶石结构的LiNi0.05Mn1.95O4,用0.5 mol·L-1过硫酸铵对其进行改型,制得锂离子筛LiNiMn-H.LiNiMn-H对Li+的饱和交换容量达5.2 mmol·g-1.用缩核模型(Shrinking-Core Model)处理该离子交换的反应动力学数据得到LiNiMn-H吸附Li+时离子交换反应的控制步骤是颗粒扩散控制(PDC),同时得到了该实验条件下锂离子筛LiNiMn-H吸附Li+的动力学方程和颗粒扩散系数De.  相似文献   

4.
A method of electrochemical impedance spectroscopy was used to study the reversible lithium intercalation from nonaqueous electrolyte into tin films with the thickness of 0.1–1 μm. The impedance spectra of lithium-tin (Li x Sn) electrodes have a complicated shape depending on the electrode state and prehistory; they reflect the occurrence of several consecutive and parallel processes, including the lithium migration, diffusion, and accumulation. The formation of a solid-electrolyte layer on the surface at Li intercalation into Sn is observed. Equivalent circuits are proposed that adequately model the experimental data on the Li x Sn electrodes both freshly prepared and after prolonged cycling. Problems associated with the choice of equivalent circuits and determination of their parameters, the accuracy of the diffusion coefficient determination, the trends in the parameters’ variation with electrode potential (composition) are discussed.  相似文献   

5.
Intercalation of lithium from an LiClO4 propylene carbonate solution into thin-film TiO2 (rutile) electrodes produced by thermal oxidation of a titanium substrate are studied using cyclic voltammetry and impedance measurements at 0.01 to 105 Hz. An equivalent circuit adequately modeling the impedance spectra of TiO2- and Li x TiO2 electrodes throughout the frequency range studied is proposed. The electrochemical characteristics of film electrodes, the reversibility of intercalation-deintercalation process, the effect of surface passivation on the lithium transfer rate, and the dependence of electric, kinetic, and diffusion parameters on the electrode potential (composition) are discussed. The diffusion coefficient of lithium in Li x TiO2 is 10–12 cm2/s, as estimated by the impedance method.  相似文献   

6.
The creation of new electrode materials and the modification of existing ones are important trends in the development of lithium-ion batteries. Of special significance is to evaluate their diffusivity, i.e., the ability of providing transfer of the electroactive component. Such electrochemical techniques as cyclic voltammetry, electrochemical impedance spectroscopy, potentiostatic intermittent titration technique, and galvanostatic intermittent titration technique are used for this purpose. The values of chemical diffusion coefficient D estimated in similar electrode materials are shown to scatter by several orders of magnitude. Principal causes of this rather considerable scattering are discussed, including the uncertainty of diffusion area estimations and the use of various approaches to deriving equations to calculate D. Our conclusions are illustrated by examples of D estimations in the electrode materials Li x C6, Li x Sn, Li x TiO2, Li x WO3, LiM y Mn2?y O4, and LiFePO4.  相似文献   

7.
The methods of coulometric titration and electrode impedance spectroscopy are used in studying the behavior of carbon film electrodes free of binding and conducting additives in the course of reversible lithium intercalation from nonaqueous electrolytes. The electrodes with the high and low degrees of graphitization are studied. The measurements are performed in the frequency range from 105 to 10?2 Hz with the lithium concentration in intercalate varied from 0.025 mol/cm3 (corresponds to LiC6) to a state free of lithium. The factors responsible for the hysteresis in charge-discharge curves, the versions of equivalent circuits (EC) suitable for modeling the impedance spectra of Li x C6 electrodes, the dependence of EC parameters and the lithium diffusion coefficient on the concentration are discussed. It is shown that all experimental impedance spectra can be adequately modeled by a common general EC. The concentration dependences are consistent with the earlier data of pulse methods. The diffusion coefficient varies approximately from 10?12 to 10?13 cm2/s.  相似文献   

8.
New phases which arise from partial substitution of Ti4+ by Cr3+ and Li+ of the compound La2/3TiO3 have been obtained, giving rise to the series La1.33LixCrxTi2−xO6 (x=0.66, 0.55 and 0.44). These phases adopt a perovskite-type structure as deduced from their structural characterization. Rietveld's analyses of neutron diffraction data show that it is orthorhombic (S.G. Pbnm) with ordered domains. Conductivity has been examined by complex impedance spectroscopy and it increases with increasing lithium and chromium content. These materials behave as mixed conductors with low activation energies. Magnetic susceptibility variation with temperature shows antiferromagnetic interactions at the lowest temperatures.  相似文献   

9.
The spinel LiMn2O4 cathode material has been considered as one of the most potential cathode active materials for rechargeable lithium ion batteries. The sodium-doped LiMn2O4 is synthesized by solid-state reaction. The X-ray diffraction analysis reveals that the Li1?x Na x Mn2O4 (0?≤?x?≤?0.01) exhibits a single phase with cubic spinel structure. The particles of the doped samples exhibit better crystallinity and uniform distribution. The diffusion coefficient of the Li0.99Na0.01Mn2O4 sample is 2.45?×?10?10 cm?2 s?1 and 3.74?×?10?10 cm?2 s?1, which is much higher than that of the undoped spinel LiMn2O4 sample, indicating the Na+-ion doping is favorable to lithium ion migration in the spinel structure. The galvanostatic charge–discharge results show that the Na+-ion doping could improve cycling performance and rate capability, which is mainly due to the higher ion diffusion coefficient and more stable spinel structure.  相似文献   

10.
Lithium insertion reactions of the lithium spinels Fe[Li0.5Fe1.5]O4, Li0.5Zn0.5[Li0.5Mn1.5]O4 and Li [Fe0.5Mn1.5]O4 by n-butyl lithium or electrochemically yield Li2.5Fe2.5O4, Li2Zn0.5Mn1.5O4, and Li2 Fe0.5Mn1.5O4, respectively. It is shown that the [B2]O4 framework of the A[B2]O4 spinel structure remains intact upon lithium insertion, and provides a three-dimensional interstitial pathway for Li+ ion diffusion. Lithium insertion is completely reversible in the normal lithium spinel LiFe0.5Mn1.5O4; delithiation of Li2.5Fe2.5O4 results in Li1.5Fe2.5O4 and none of the inserted lithium may be removed from the mixed lithium spinel Li2Zn0.5Mn1.5O4. Physicochemical properties including electrical resistivity, magnetic susceptibility, and Mössbauer spectra of the hosts and their lithiated analogs are discussed.  相似文献   

11.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

12.
A new facile strategy has been designed to fabricate spinel MnxCo3?xO4 porous nanocubes, which involves a morphology‐conserved and pyrolysis‐induced transformation of Prussian Blue Analogue Mn3[Co(CN)6]2 ? nH2O perfect nanocubes. Owing to the release of CO2 and NxOy in the process of interdiffusion, this strategy can overcome to a large extent the disadvantage of the traditional ceramic route for synthesis of spinels, and MnxCo3?xO4 with foamlike porous nanostructure is effectively obtained. Importantly, when evaluated as an electrode material for lithium‐ion batteries, the foamlike MnxCo3?xO4 porous nanocubes display high specific discharge capacity and excellent rate capability. The improved electrochemical performance is attributed to the beneficial features of the particular foamlike porous nanostructure and large surface area, which reduce the diffusion length for Li+ ions and enhance the structural integrity with sufficient void space for buffering the volume variation during the Li+ insertion/extraction.  相似文献   

13.
Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a “Li-stuffed” spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte–cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10−4 S cm−1, a total Li-ion conductivity averaging 4.2 × 10−4 S cm−1, and electronic conductivity averaging 3.8 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.  相似文献   

14.
LiMnC2O4(Ac) precursor in which Li+ and Mn2+ were amalgamated in one molecule was prepared by solid-state reaction at room-temperature using manganese acetate, lithium hydroxide and oxalic acid as raw materials. By thermo-decomposition of LiMnC2O4(Ac) at various temperatures, a series of Li1+y[Mn2−xLix]16dO4 spinels were prepared with Li2MnO3 as impurities. The structure and phase transition of these spinels were investigated by XRD, TG/DTA, average oxidation state of Mn and cyclic voltammeric techniques. Results revealed that the Li-Mn-O spinels with high Li/Mn ratio were unstable at high temperature, and the phase transition was associated with the transfer of Li+ from octahedral 16c sites to 16d sites. With the sintering temperature increasing from 450 to 850 °C, the phase structure varied from lithiated-spinel Li2Mn2O4 to Li4Mn5O12-like to LiMn2O4-like and finally to rock-salt LiMnO2-like. A way of determining x with average oxidation state of Mn and the content of Li2MnO3 was also demonstrated.  相似文献   

15.
The crystal structure and electrochemical intercalation kinetics of spinel LiNi0.5Mn1.5O4 such as the resistance of a solid electrolyte interphase (SEI) film, charge transfer resistance (R ct), surface layer capacitance, exchange current density (i 0), and chemical diffusion coefficient are evaluated by Fourier transform infrared (FT-IR) and electrochemical impedance spectroscopy (EIS), respectively. FT-IR shows that LiNi0.5Mn1.5O4 thus obtained has a cubic spinel structure, which can be indexed in a space group of Fd3m with a disordering distribution of Ni. EIS indicates that R s is almost a constant at different states of charge. The thickness of SEI film increases with increasing of the cell voltage. R ct values evidently decreases when lithium ions deintercalated from the cathode in the voltage range from OCV to 4.6 V, and R ct value increases with increasing potential of deintercalation over 4.7 V. i 0 varies between 0.2 and 1.6 mA cm?2, and the solid phase diffusion coefficient of Li+ changed depending on the electrode potential in the range of 10?11–10?9 cm2 s?1.  相似文献   

16.
The structural features and electrophysical properties of lithium-conducting compounds having defect perovskite structure based on Li0.5La0.5Nb2O6 and Li0.5La0.5TiO3 were studied using X-ray diffraction and synchrotron analyses, potentiometry, and complex impedance spectroscopy. Intercalated lithium was found to differently influence ion conductance in titanium- and niobium-containing materials. This difference was found to arise from the structural features of the materials. The systems studied have high chemical diffusion coefficients of lithium (D Li+ = 1 × 10−6 cm2/s for Li0.5La0.5Nb2O6 and D Li+ = 3.3 × 10−7 cm2/s for Li0.5La0.5TiO3).  相似文献   

17.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

18.
The possibility of directly using the natural mineral pyrophyllite for the efficient generation of Li+ intercalation current is demonstrated experimentally. The dependences of changes in the Gibbs energy and the entropy of the intercalation reaction on the degree of the guest lithium load are analyzed. A distinctive feature of the intercalation kinetics in Li x Al2(OH)2[Si2O5]2 is the anomalously high diffusion coefficients of lithium cations at x > 0.3.  相似文献   

19.
Layered, lithium-rich Li[Li0.2Co0.3Mn0.5]O2 cathode material is synthesized by reactions under autogenic pressure at elevated temperature (RAPET) method, and its electrochemical behavior is studied in 2?M Li2SO4 aqueous solution and compared with that in a non-aqueous electrolyte. In cyclic voltammetry (CV), Li[Li0.2Co0.3Mn0.5]O2 electrode exhibits a pair of reversible redox peaks corresponding to lithium ion intercalation and deintercalation at the safe potential window without causing the electrolysis of water. CV experiments at various scan rates revealed a linear relationship between the peak current and the square root of scan rate for all peak pairs, indicating that the lithium ion intercalation–deintercalation processes are diffusion controlled. The corresponding diffusion coefficients are found to be in the order of 10?8?cm2?s?1. A typical cell employing Li[Li0.2Co0.3Mn0.5]O2 as cathode and LiTi2(PO4)3 as anode in 2?M Li2SO4 solution delivers a discharge capacity of 90?mA?h g?1. Electrochemical impedance spectral data measured at various discharge potentials are analyzed to determine the kinetic parameters which characterize intercalation–deintercalation of lithium ions in Li[Li0.2Co0.3Mn0.5]O2 from 2?M Li2SO4 aqueous electrolyte.  相似文献   

20.
The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO2 and the B-site mixed magnetic delafossite AgCu0.5Mn0.5O2 were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO2 and AgCu0.5Mn0.5O2 display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 μV/K and conductivity values of σ=3.2×10−1 and 1.8×10−4 S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO2 is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO2 shows a solid solution domain between x=0 and 0.8Li+ followed by a plateau nearby 1.7 V (vs. Li+/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu0.5Mn0.5O2 also exhibits Li+/Ag+ displacement reaction in a comparable potential range than AgCuO2; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO2 and AgCu0.5Mn0.5O2 provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li+/Li), respectively, with no evidence of a new defined phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号