首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine (TL(tBu)) has been prepared in high yield from 2,6-bis(hydroxymethyl)pyridine (1) and 1,3-di-tert-butylimidazolin-2-imine (3). Reaction of TL(tBu) with [Cu(MeCN)4]PF6 affords the highly reactive copper(I) complex [(TL(tBu))Cu]PF6, [5]PF6, which forms the stable copper(I) isocyanide complexes [6a]PF6 (nu(CN) = 2179 cm(-1)) and [6b]PF6 (nu(CN) = 2140 cm(-1)) upon addition of tert-butyl or 2,6-dimethylphenyl isocyanide, respectively. For the cations 6a and 6b, DFT calculations reveal ground-state electronic structures of the type [(TL(tBu)-kappaN(1):kappaN(2))Cu(CNR)] with tricoordinate geometries around the copper atoms. Exposure of [5]PF6 to the air readily leads to trapping of atmospheric CO2 to form the square-planar complex [(TL(tBu))Cu(HCO3-kappaO)]PF6, [7]PF6, with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. In chlorinated solvents such as dichloromethane or chloroform, [5]PF(6) rapidly abstracts chloride by reductive dechlorination of the solvent to yield [(TL(tBu))CuCl]PF6, [8]PF6 quantitatively. Reaction of TL(tBu) with copper(I) bromide or chloride affords complexes 9a and 9b, respectively, for which X-ray diffraction analysis, low-temperature NMR experiments and DFT calculations reveal the presence of a kappa(2)-coordinated ligand of the type [(TL(tBu)-kappaN(1):kappaN(2))CuX]. In solution, complex 9b undergoes slow disproportionation forming the mixed-valence copper(II)/copper(I) system [(TL(tBu))CuCl][CuCl2], [8]CuCl2 with a linear dichlorocuprate(I) counterion.  相似文献   

2.
Díez J  Gamasa MP  Panera M 《Inorganic chemistry》2006,45(25):10043-10045
Tetranuclear [Cu4I4{(S,S)-iPr-pybox}2] (1) and dinuclear [Cu2Cl-{(S,S)-iPr-pybox}2][CuCl2] (2) copper(I) complexes have been synthesized by reaction of iPr-pybox with CuI and CuCl, respectively. Furthermore, dinuclear [Cu2(R-pybox)2][PF6]2 [R-pybox = (R,R)-Ph-pybox (3), (S,S)-iPr-pybox (4)] and mononuclear complexes [Cu(R-pybox)2][PF6] [R-pybox = (R,R)-Ph-pybox (5), (S,S)-iPr-pybox (6)] have been prepared by reaction of [Cu(MeCN)4][PF6] and the corresponding pybox. The structures of complexes 1-3 have been determined by X-ray diffraction analyses.  相似文献   

3.
Reactions of Hg(OAc)2 with 2 equiv of TabHPF6 [TabH = 4-(trimethylammonio)benzenethiol] in MeCN/MeOH afforded a mononuclear linear complex [Hg(Tab)2](PF6)2 (1). By using 1 as a precursor, a new family of mercury(II) zwitterionic thiolate complexes, [Hg2(Tab)6](PF6)4.2MeCN (2.2MeCN), [Hg(Tab)2(SCN)](PF6) (3), [Hg(Tab)2(SCN)2] (4), [Hg(Tab)I2] (5), {[Hg(Tab)2]4[HgI2][Hg2I6]}(PF6)2(NO3)4 (6), [Hg(Tab)2][HgI4] (7), [Hg(Tab)2][HgCl2(SCN)2] (8), [Tab-Tab]2[Hg3Cl10] (9), and [Hg2(Tab)6]3(PF6)Cl11 (10), were prepared and characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and single-crystal X-ray crystallography. The [Hg2(Tab)6]4+ tetracation of 2 or 10 contains an asymmetrical Hg2S2 rhomb with an inversion center lying on the midpoint of the Hg...Hg line. The Hg atom of the [Hg(Tab)2]2+ dication of 3 is coordinated to one SCN-, forming a rare T-shaped coordination geometry, while in 4, the Hg atom of [Hg(Tab)2]2+ is coordinated to two SCN-, forming a seesaw-shaped coordination geometry. Through weak secondary Hg...S coordinations, each cation in 3 is further linked to afford a one-dimensional zigzag chain. The trigonal [Hg(Tab)I2] molecules in 5 are held together by weak secondary Hg...I and Hg...S interactions, forming a one-dimensional chain structure. In 6, the four [Hg(Tab)2]2+ dications, one HgI2 molecule, one [Hg2I6]2- dianion, one PF6-, and four NO3- anions are interconnected by complicated secondary Hg...I and Hg...O interactions, forming a scolopendra-like chain structure. The secondary Hg...I interactions, [Hg(Tab)2]2+ and [HgI4]2- in 7, are combined to generate a one-dimensional chain structure, while [Hg(Tab)2]2+ and [HgCl2(SCN)2]2- in 8 are interconnected by secondary Hg...N interactions to form a one-dimensional zigzag chain structure. Compound 9 consists of two [Tab-Tab]2+ dications and one [Hg3Cl10]4- tetraanion. The facile approach to the construction of 2-8 and 10 from 1 may be applicable to the mimicking of a coordination sphere of the Hg sites of metallothioneins.  相似文献   

4.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

5.
The reactions of ammonia, pyridine (py), N-methyl imidazole (N-MeIm), tetrahydrothiophene (tht), and piperidine (pip) with Re(CO) 3(H 2O) 3 (+), 1 ( + ), were investigated employing aqueous conditions under atmospheric dioxygen. The reaction of [ 1]Br in aqueous ammonia led to [Re(CO) 3(NH 3) 3]Br ([ 2]Br) as the only product isolated. For the aqueous reactions of [ 1]Br with py, N-MeIm, and tht, mixtures of products are formed because of competition between the bromide and added ligand, even when the ligand is present in excess. Substitution of the PF 6 (-) anion for Br (-) leads to the clean formation of [Re(CO) 3L 3][PF 6] ([ 3][PF 6]-[ 5][PF 6]) for py, N-MeIm, and tht, respectively, as the only products observed. Reaction of [ 1][PF 6] with pip produces the dimeric species, (pip)(CO) 3Re(micro-OH) 2Re(CO) 3(pip), 6. Reactions of [ 1]Br were also performed in methanol for comparison purposes. The reaction with pip in this solvent led to the analogous dimer, (pip)(CO) 3Re(micro-OMe) 2Re(CO) 3(pip), 7; however, reactions with py, N-MeIm, and tht gave Re(CO) 3L 2Br, 8- 10, respectively, as the only products. The crystal structures of compounds [ 2]Br- 10 are reported.  相似文献   

6.
Ma DL  Che CM  Siu FM  Yang M  Wong KY 《Inorganic chemistry》2007,46(3):740-749
[Ru(tBu2bpy)2(2-appt)](PF6)2 [1.(PF6)2, tBu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 2-appt = 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine] and [Re(CO)3(2-appt)Cl] (2) were prepared and characterized by X-ray crystal analysis. The binding of 1.(PF6)2 and 2 to calf thymus DNA (ct DNA) led to increases in the DNA melting temperature (Delta Tm = +12 degrees C), modest hypochromism (29% and 5% of the absorption bands at lambda max = 450 and 376 nm, respectively), and insignificant shifts in the absorption maxima. The binding constants of 1.(PF6)2 and 2 with ct DNA, as determined by absorption titration, are (8.9 +/- 0.5) x 104 and (3.6 +/- 0.1) x 104 dm3 mol-1, respectively. UV-vis absorption titration, DNA melting studies, and competition dialysis using synthetic oligonucleotides [poly(dA-dT)2 and poly(dG-dC)2] revealed that 1.(PF6)2 and 2 exhibit a binding preference for AT sequences. A modeling study on the interaction between 1 or 2 and B-DNA revealed that the minor groove is the most favored binding site and an extensive hydrogen-bonding network is formed. As determined by MTT assays, 1.(PF6)2 and 2 exhibited moderate cytotoxicities toward several human cancer cell lines (KB-3-1, HepG2, and HeLa), as well as a multi-drug-resistant cancer cell line (KB-V-1). According to confocal microscopic and flow cytometric studies, 1.(PF6)2 and 2 induced apoptosis (50-60%) in cancer cells with <5% necrosis detected.  相似文献   

7.
A family of coordination complexes has been synthesized, each comprising a ruthenium(II) center ligated by a thiacrown macrocycle, [9]aneS(3), [12]aneS(4), or [14]aneS(4), and a pair of cis-coordinated ligands, niotinamide (nic), isonicotinamide (isonic), or p-cyanobenzamide (cbza), that provide the complexes with peripherally situated amide groups capable of hydrogen bond formation. The complexes [Ru([9]aneS(3))(nic)(2)Cl]PF(6), 1(PF(6)); [Ru([9]aneS(3)) (isonic)(2)Cl]PF(6), 2(PF(6)); [Ru([12]aneS(4))(nic)(2)](PF(6))(2), 3(PF(6))(2); [Ru([12]aneS(4))(isonic)(2)](PF(6))(2), 4(PF(6))(2); [Ru([12]aneS(4)) (cbza)(2)](PF(6))(2), 5(PF(6))(2); [Ru([14]aneS(4))(nic)(2)](PF(6))(2), 6(PF(6))(2); [Ru([14]aneS(4))(isonic)(2)](PF(6))(2), 7(PF(6))(2); and [Ru([14]aneS(4))(cbza)(2)](PF(6))(2), 8(PF(6))(2) have been characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV/visible spectroscopy shows that each complex exhibits an intense high-energy band (230-255 nm) assigned to a pi-pi* transition and a lower energy band (297-355 nm) assigned to metal-to-ligand charge-transfer transitions. Electrochemical studies indicate good reversibility for the oxidations of complexes with nic and isonic ligands (|I(a)/I(c)| = 1; DeltaEp < 100 mV), In contrast, complexes 5 and 8, which incorporate cbza ligands, display oxidations that are not fully electrochemically reversible (|I(a)/I(c)| = 1, DeltaEp > or = 100 mV). Metal-based oxidation couples between 1.32 and 1.93 V versus Ag/AgCl can be rationalized in term of the acceptor capabilities of the thiacrown ligands and the amide-bearing ligands, as well as the pi-donor capacity of the chloride ligands in compounds 1 and 2. The potential to use these electroactive metal complexes as building blocks for hydrogen-bonded crystalline materials has been explored. Crystal structures of compounds 1(PF(6)).H(2)O, 1(BF(4)).2H(2)O, 2(PF(6)), 3(PF(6))(2), 6(PF(6))(2)CH(3)NO(2), and 8(PF(6))(2) are reported. Four of the six form amide-amide N-H...O hydrogen bonds leading to networks constructed from amide C(4) chains or tapes containing R(2)(2) (8) hydrogen-bonded rings. The other two, 2(PF(6)) and 8(PF(6)), form networks linked through amide-anion N-H...F hydrogen bonds. The role of counterions and solvent in interrupting or augmenting direct amide-amide network propagation is explored, and the systematic relationship between the hydrogen-bonded networks formed across the series of structures is presented, showing the relationship between chain and tape arrangements and the progression from 1D to 2D networks. The scope for future systematic development of electroactive tectons into network materials is discussed.  相似文献   

8.
The synthesis of the complex [RhCl3tpm*], (1), (tpm*= tris(3,5-dimethylpyrazolyl)methane) is reported. This complex is a suitable starting material for the synthesis of heteroleptic half-sandwich complexes: it has been used to synthesise the complexes; [RhCl(bpy)tpm*][(PF6)2][2][(PF6)2](bpy = 2,2'-bipyridyl), [RhCl(phen)tpm*][(PF6)2][3][(PF6)2]. (phen = 1,10-phenanthroline), [RhCl2(py)tpm*][(PF6)], [4][(PF6)2], (py = pyridine), and[RhCl(py)2tpm*][(PF6)2], [5][(PF6)2]. The structures of [2][(PF6)2], [33][(PF6)2], [4][(PF6)2], and [5][(PF6)2] have been determined by X-ray crystallography. The electrochemical and photophysical properties of these new compounds have also been investigated.  相似文献   

9.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

10.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

11.
The ruthenium complexes, [(eta5-C5R5)Ru(CH3CN)3]PF6 (1-Cp*, R = Me; 1-Cp, R = H), underwent reaction with both 1-(2-chloro-1-methylvinyl)-2-pentynyl-(Z)-cyclopentene (6-Z) and 1-(2-chloro-1-methylvinyl)-2-pentynyl-(E)-cyclopentene (6-E) to give (eta5-C5R5)Ru[eta6-(5-chloro-4-methyl-6-propylindan)]PF6 (7-Cp*, R = Me; 7-Cp, R = H). In a similar fashion, reaction of 1-Cp and 1-Cp* with 1-isopropenyl-2-pent-1-ynylcyclopentene (8) led to the formation of (eta5-C5R5)Ru(eta6-4-methyl-6-propylindan)]PF6 (9-Cp*, R = Me; 9-Cp, R = H). The reaction of 1-Cp* with 8 at -60 degrees C in CDCl3 solution led to observation of the eta6-dienyne complex, (eta5-C5Me5)Ru[eta6-(1-isopropenyl-2-pent-1-ynylcyclopentene)]PF6 (10), by 1H NMR spectroscopy. Complexes 7-Cp and 10 were characterized by X-ray crystallographic analysis.  相似文献   

12.
The chelate ligand tris[(1-vinylimidazol-2-yl)methyl]amine (5) was synthesized in five steps from commercially available starting materials. Upon reaction with ZnCl2 or CuCl2 in the presence of NH4PF6, the complexes [Zn5Cl]PF6 (6) and [Cu5Cl]PF6 (7) were obtained. The structure of both complexes was determined by single-crystal X-ray crystallography. Immobilization of 6 and 7 was achieved by co-polymerization with ethylene glycol dimethacrylate. The supported complexes P6-Zn and P7-Cu were found to be efficient catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) at 50 degrees C. At pH 9.5, the heterogeneous catalyst P7-Cu was 56 times more active than the homogeneous catalyst 7. Partitioning effects, which increase the local concentration of BNPP in the polymer, are shown to contribute to the enhanced activity of the immobilized catalyst.  相似文献   

13.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

14.
When the ortho-metallated complexes cis-[Pt(kappa(2)-C6H3-5-R-2-PPh2)2] (R = H 1, Me 2) are either heated in toluene or treated with CO at room temperature, one of the four-membered chelate rings is opened irreversibly to give dinuclear isomers [Pt2(kappa(2)-C6H3-5-R-2-PPh2)2(mu-C6H3-5-R-2-PPh2)2] (R = H 10, Me 11). A single-crystal X-ray diffraction study shows the Pt...Pt separation in 10 to be 3.3875(4) A. By-products of the reactions of 1 and 2 with CO are polymeric isomers (R = H 13, Me 14) in which one of the P-C ligands is believed to bridge adjacent platinum atoms intermolecularly. In contrast to the behaviour of 1 and 2, when cis-[Pt(kappa(2)-C6H3-6-Me-2-PPh2)2] (cis-3) is heated in toluene, the main product is trans-3, and reaction of cis-3 with CO gives a carbonyl complex [Pt(CO)(kappa(1)-C-C6H3-6-Me-2-PPh2)(2-C6H3-6-Me-2-PPh2)] 15, in which one of the carbanions is coordinated only through the carbon. Formation of a dimer analogous to 10 or 11 is sterically hindered by the 6-methyl substituent. Comproportionation of 1 or 2 with [Pt(PPh3)2L] (L = PPh3, C2H4) gives diplatinum(I) complexes [Pt2(mu-C6H3-5-R-2-PPh2)2(PPh3)2] (R = H 16, Me 17). An X-ray diffraction study shows that 17 contains a pair of planar-coordinated metal atoms separated by 2.61762(16) A. There is no evidence for the formation of an analogue containing mu-C6H3-6-Me-2-PPh2. The axial PPh3 ligands of 16 are readily replaced by ButNC giving [Pt2(mu-2-C6H4PPh2)2(CNBut)2] 18, which is protonated by HBF4 to form a mu-hydridodiplatinum(II) salt [Pt2(mu-H)(mu-2-C6H4PPh2)2(CNBut)2]BF4 [21]BF4. The J(PtPt) values in [21]BF4 and 18, 2700 Hz and 4421 Hz, respectively, reflect the weakening of the Pt-Pt interaction caused by protonation. Similarly, 16 and 17 react with the electrophiles iodine and strong acids to give salts of general formula [Pt2(mu-Z)(mu-C6H3-5-R-2-PPh2)2(PPh3)2]Y (Y = Z = I, R = H 19+, Me 20+; Z = H, Y = BF4, PF6, OTf, R = H 22+; Z = H, Y = PF6, R = Me 23+). A single-crystal X-ray diffraction study of [23]PF6 shows that the cation has an approximately A-frame geometry, with a Pt-Pt separation of 2.7888(3) A and a Pt-H bond length of 1.62(1) A, and that the 5-methyl substituents have undergone partial exchange with the 4-hydrogen atoms of the PPh2 groups of the bridging carbanion. The latter observation indicates that the added proton of [23]+ undergoes a reversible reductive elimination-oxidative addition sequence with the Pt-C(aryl) bonds.  相似文献   

15.
Chaumont A  Wipff G 《Inorganic chemistry》2004,43(19):5891-5901
We report a molecular dynamics study of the solvation of the UO2(2+) and Eu3+ cations and their chloro complexes in the [BMI][PF6][H2O] "humid" room-temperature ionic liquid (IL) composed of 1-butyl-3-methylimidazolium+ and PF6- ions and H2O in a 1:1:1 ratio. When compared to the results obtained in dry [BMI][PF6], the present results reveal the importance of water. The "naked" cations form UO2(H2O)5(2+) and Eu(H2O)9(3+) complexes, embedded in a shell of 7 and 8 PF6- anions, respectively. All studied UO2Cln(2-n) and EuCln(3-n) chloro complexes remain stable during the dynamics and coordinate additional H2O molecules in their first shell. UO2Cl4(2-) and EuCl6(3-) are surrounded by an "unsaturated" water shell, followed by a shell of BMI+ cations. According to an energy component analysis, the UO2Cl4(2-) and EuCl6(3-) species, intrinsically unstable toward dissociation, are more stable than their less halogenated analogues in the IL solution, due to the solvation forces. The different chloro species also interact better with the humid than with the dry IL, which hints at the importance of solvent humidity to improve their solubility. Humidity markedly modifies the local ion environment, with major consequences as far as their spectroscopic properties are concerned. We finally compare the aqueous interface of [BMI][PF6] and [OMI][PF6] ionic liquids, demonstrating the importance of imidazolium substituents (N-butyl versus N-octyl) to the nature of the interface and miscibility with water.  相似文献   

16.
Mild electrophilic C(sp2)-H cyclometalation of 2-phenylpyridine and N,N-dimethylbenzylamine by the chloro-bridged osmium(II) dimer [OsCl(micro-Cl)(eta6-C6H6)]2 in acetonitrile affords cyclometalated pseudotetrahedral OsII complexes [Os(C approximately N)(eta6-C6H6)(NCMe)]PF6 (C approximately N=o-C6H4py-kappa C,N (2) and o-C6H4CH2NMe2-kappa C,N (5), respectively) in good to excellent yields. The cyclometalation reactions are super sensitive to the nature of an external base. Sodium hydroxide is essential for cyclometalation of 2-phenylpyridine, but NaOH retards metalation of N,N-dimethylbenzylamine, the tertiary amine being self-sufficient as a base. Further reactions of compounds 2 and 5 with 1,10-phenanthroline or 2,2'-bipyridine (N approximately N) lead to the substitution of the eta6-bound benzene to produce octahedral species [Os(C approximately N)(N approximately N)(NCMe)2]PF6 or [Os(C approximately N)(N approximately N)2]PF6 in MeCN or MeOH as solvent, respectively. The cis configuration of the MeCN ligands in [Os(C approximately N)(phen)(NCMe)2]PF6 has been confirmed by an X-ray crystallographic study. Electrochemical investigation of the octahedral osma(II)cycles by cyclic voltammetry showed a pseudoreversible MIII/II redox feature at (-50)-(+109) and 190-300 mV versus Ag/AgCl in water and MeCN, respectively. As a possible application of the compounds, a rapid electron exchange between the reduced active site of glucose oxidase enzyme from Aspergillus niger and the electrochemically generated OsIII species has been demonstrated. The corresponding second-order rate constants cover the range (0.7-4.8)x10(6) M(-1) s(-1) at 25 degrees C and pH 7.  相似文献   

17.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

18.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

19.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

20.
Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号