首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We re-examine the GaAs(0 0 1) surface by means of first-principles calculations based on a real-space multigrid method. The c(4×4),(2×4) and (4×2) surface reconstructions minimize the surface energy for anion-rich, stoichiometric and cation-rich surfaces, respectively. Structural models proposed in the literature to explain the Ga-rich GaAs(0 0 1) (4×6) surface are dismissed on energetic grounds. The electronic properties of the novel ζ(4×2) structure are discussed in detail. We calculate the reflectance anisotropy of the energetically most favoured surfaces. A strong influence of the surface geometry on the optical anisotropy is found.  相似文献   

2.
J. M. Ripalda  P. A. Bone  P. Howe  T. S. Jones   《Surface science》2003,540(2-3):L593-L599
The GaAs(0 0 1) surface morphology and structure during growth by migration enhanced epitaxy (MEE) has been studied by reflection high energy electron diffraction and scanning tunneling microscopy. Changes induced by varying the incident As/Ga flux ratio, growth temperature and the total amount of material deposited in each cycle have been studied and the results compared with GaAs(0 0 1) growth by conventional molecular beam epitaxy (MBE). Comparison of the surface morphology at the end of the Ga and As cycles indicates no clear evidence for any enhancement in the Ga adatom diffusion length during the Ga cycle. However, the morphological anisotropy of the growth front does change significantly and it is proposed that this changing anisotropy during MEE enables Ga adatom diffusion along both azimuths. The surface anisotropy during MEE growth is found to increase with the Ga/As ratio. Although there is a clear correlation between composition and morphology, we have also found that highly ordered and flat surfaces are not necessarily an indication of stoichiometric material. We also attempt to clarify a recent controversy on the structure of the c(4 × 4) reconstruction by studying the surface structure at the end of the As cycle as a function of the As/Ga ratio.  相似文献   

3.
A well ordered c(8 × 2)-InAs monolayer is grown by molecular beam epitaxy (MBE) on a GaAs(0 0 1) substrate. After slow sublimation of this monolayer up to 560 °C, a homogeneously (n × 6) reconstructed GaAs surface is obtained. This surface is studied by scanning tunneling microscopy (STM) in UHV. This shows that it is well-ordered on a large scale with 200 nm long As dimer rows along and is also locally (12 × 6) reconstructed, the cell structure is proposed. We believe that this surface organization results from the specific As/Ga (0.7) surface atomic ratio obtained after the InAs monolayer growth and sublimation cycle.  相似文献   

4.
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface.  相似文献   

5.
X. -C. Guo  R. J. Madix   《Surface science》2004,550(1-3):81-92
The adsorption of oxygen and carbon dioxide on cesium-reconstructed Ag(1 1 0) surface has been studied with scanning tunneling microscopy (STM) and temperature programmed desorption (TPD). At 0.1 ML Cs coverage the whole surface exhibits a mixture of (1 × 2) and (1 × 3) reconstructed structures, indicating that Cs atoms exert a cooperative effect on the surface structures. Real-time STM observation shows that silver atoms on the Cs-covered surface are highly mobile on the nanometer scale at 300 K. The Cs-reconstructed Ag(1 1 0) surface alters the structure formed by dissociative adsorption of oxygen from p(2 × 1) or c(6 × 2) to a p(3 × 5) structure which incorporates 1/3 ML Ag atoms, resulting in the formation of nanometer-sized (10–20 nm) islands. The Cs-induced reconstruction facilitates the adsorption of CO2, which does not adsorb on unreconstructed, clean Ag(1 1 0). CO2 adsorption leads to the formation of locally ordered (2 × 1) structures and linear (2 × 2) structures distributed inhomogeneously on the surface. Adsorbed CO2 desorbs from the Cs-covered surface without accompanied O2 desorption, ruling out carbonate as an intermediate. As a possible alternative, an oxalate-type surface complex [OOC–COO] is suggested, supported by the occurrence of extensive isotope exchange between oxygen atoms among CO2(a). Direct interaction between CO2 and Cs may become significant at higher Cs coverage (>0.3 ML).  相似文献   

6.
The role of kinetics in the superstructure formation of the Sb/Si(0 0 1) system is studied using in situ surface sensitive techniques such as low energy electron diffraction, Auger electron spectroscopy and electron energy loss spectroscopy. Sb adsorbs epitaxially at room-temperature on a double-domain (DD) 2 × 1 reconstructed Si(0 0 1) surface at a flux rate of 0.06 ML/min. During desorption, multilayer Sb agglomerates on a stable Sb monolayer (ML) in a DD (2 × 1) phase before desorbing. The stable monolayer desorbs in the 600–850 °C temperature range, yielding DD (2 × 1), (8 × 4), c(4 × 4), DD (2 × 1) phases before retrieving the clean Si(0 0 1)-DD (2 × 1) surface. The stable 0.6-ML (8 × 4) phase here is a precursor phase to the recently reported 0.25-ML c(4 × 4) surface phase, and is reported for the first time.  相似文献   

7.
Using a molecular dynamics DFT-LDA code, we have analyzed the Schottky-barrier formation of a Se-passivated GaAs(1 0 0)-2×1 reconstruction. In our approach we consider, first, the energetically most favorable interfaces formed by the deposition of either one or two Ga atoms per surface unit cell; then, we analyze the electron density of states and calculate the interface Fermi level and the Schottky-barrier height. We show that the height depends essentially on the very same interface geometry. In particular, the effect of exchanging Ga and Se atoms at the interface (an intermixing process) yields a normal Schottky-barrier height, while the normal passivated surface yields an ohmic contact.  相似文献   

8.
S. Kono  T. Goto  Y. Ogura  T. Abukawa 《Surface science》1999,420(2-3):200-212
The possibility of surface electromigration (SE) of metals of In, Ga, Sb and Ag on a very flat Si(001)2×1 substrate (single domain 2×1) was examined by SEM, μ-RHEED and μ-AES under UHV conditions. It was found that Ga, Sb and Ag show no SE on Si(001) surface even at DC annealing temperatures for the desorption of these metals. For In on Si(001), a very fast SE (8000 μm/min) towards the cathode side was found that suddenly sets in at 450°C DC annealing, which was related to a surface phase transition. μ-RHEED and μ-AES observation showed that the SE is related to an ordered 4×3-In phase together with two-dimensional In gas phase over the 4×3-In phase and an In-disordered phase at the front end of SE. Single domain 4×3-In phases were found to occur under sequences of In deposition and DC annealing which involve the In SE on Si(001).  相似文献   

9.
Periodic, self-consistent, density functional theory (GGA-PW91) calculations are performed for both surface and subsurface atomic hydrogen on and in Ni(1 1 1). At a low coverage (θ=0.25 ML), the binding energies (BEs) of a hydrogen atom in surface fcc, subsurface octahedral (first layer), and subsurface octahedral (second layer) sites are −2.89, −2.18, and −2.11 eV, respectively. The activation energy barriers for hydrogen diffusion from the surface to the first subsurface layer and from the first to the second subsurface layer are estimated to be 0.88 and 0.52 eV, respectively. In the entire coverage range studied, hydrogen occupies surface fcc and hcp sites and subsurface octahedral sites. In addition, the magnitude of the BE per hydrogen atom and the magnetization of the nickel slabs both decrease as hydrogen coverage increases. Vibrational frequencies of hydrogen at various surface and subsurface sites are calculated and are in reasonable agreement with experimental data. A phase stability calculation with a 2 × 2 surface unit cell shows that a p(2 × 2)-2H overlayer structure (θ=0.5 ML) and a p(1 × 1)-1H structure (θ=1.0 ML) are stable at low hydrogen pressures, in agreement with numerous experimental results. A very large increase in pressure is required to populate subsurface sites. After such an increase occurs, the first subsurface layer is filled completely.  相似文献   

10.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

11.
We have used a pulsed molecular beam and time-resolved mass spectrometry to study the pyrolysis of triethylgallium (TEGa) on GaAs(100) surfaces from room temperature to 450°C. The β-hydride elimination pathway which produces ethylene and hydrogen competes with the direct desorption of the ethyl radicals. We have made a quantitative measure of the branching ratio and found that the β-hydride elimination reaction is promoted by increasing the Ga/As stoichiometric ratio of the GaAs(100) surface, but becomes less important and independent of Ga coverage at higher temperatures. The β-hydride elimination process is the rate limiting step in the desorption of ethylene and is first order in the ethyl group coverage.  相似文献   

12.
Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the β2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an 2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.  相似文献   

13.
We extend our previous treatment of a mixed ionic electronic conductor membrane, consisting of a porous cathode and anode separated by a thin non-porous layer, to the case where mass transport of molecules in the porous electrodes can be the rate-limiting step. The linearized transport equations for the ion-hole pairs in the solid and of the gas molecules in the pores are characterized by the length scales LP = √Ld(1 − φ)/Sτs and Lg = 2Lp√[τsφ/τ(1 − φ)][Dgcg/DIEci] respectively, where Ld = DIE/K is the length scale that determines the transition from diffusion limited to surface exchange limited transport in the non-porous electrodes, K is the surface exchange coefficient, DIE and Dg are the diffusion coefficients of the ion-hole pairs and of the molecules, ci and cg are the concentrations of the ions and molecules, S is the pore surface area per unit volume, φ the porosity and τs and τ the tortuosities of the solid and pore phases respectively. When Lg Lp, which is the case treated previously, the rate-limiting step in the transport is ionic diffusion and surface exchange. Enhancements in oxygen ion current of two orders in magnitude, over non-porous electrodes, are in principle achievable with porous perovskite MIEC having surface area s = 106 cm−1. When Lg Lp the rate-limiting step is mass transport in the pores and the enhancement in ion current is substantially reduced.  相似文献   

14.
Using field theoretic methods a formalism is presented within which the critical behaviour of a system undergoing a dimensional reduction may be investigated. As a paradigm we study an Ising-like system on S1 × R3−ε. If the size of the system is L, and the correlation length ξ, then as L/ξ varies it is possible to get critical behaviour associated with two different fixed points. By exploiting a set of renormalization schemes which lead to manifest dimensional reduction in the loop expansion, and utilizing the renormalization group and an expansion about the fixed point of the finite system, we quantitatively investigate such crossover behaviour in its entirety. In particular, effective susceptibility and correlation length exponents are defined and computed. These exponents interpolate between those associated with a (4 − ε)-dimensional and a (3 − ε)-dimensional Ising model.  相似文献   

15.
The effects of adsorbed H on the Mo1−xRex(110), x=0, 0.05, 0.15, and 0.25, surfaces have been investigated using low-energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS). For the x=0.15 alloy only, a c(2×2) LEED pattern is observed at a coverage Θ0.25 ML. A (2×2) pattern is observed for H coverages around Θ0.5 ML from surfaces with x=0, 0.05, and 0.15. Both c(2×2) and (2×2) patterns are attributed to reconstruction of the substrate. At higher coverages, a (1×1) pattern is observed. For the alloy surface with x=0.25, only a (1×1) pattern is obtained for all H coverages. Two H vibrations are observed in HREELS spectra for all Re concentrations, which shift to higher energies at intermediate coverages. Both peaks exhibit an isotopic shift, confirming their assignment to hydrogen. For Re concentrations of x=0.15 and higher, a third HREELS peak appears at 50 meV as H (D) coverage approaches saturation. This peak does not shift in energy with isotopic substitution, yet cannot be explained by contamination. The intrinsic width of the loss peaks depends on the Re concentration in the surface region and becomes broader with increasing x. This broadening can be attributed to surface inhomogeneity, but may also reflect increased delocalization of the adsorbed hydrogen atom.  相似文献   

16.
J.-W. He  P.R. Norton   《Surface science》1990,230(1-3):150-158
The co-adsorption of oxygen and deuterium at 100 K on a Pd(110) surface has been studied by measurements of the change in work function (Δφ) and by thermal desorption spectroscopy (TDS). When the surface with co-adsorbed species is heated, the adsorbates O and D react to form D2O which desorbs from the surface at T > 200 K. The D2O desorption peaks shift continuously to lower temperatures as the surface D coverage (θD) increases. The maximum production of D2O is estimated to be 0.26 ML (1 ML = 9.5 × 1014 atoms cm−2), resulting from reaction in a layer containing 0.65 ML D and 0.3 ML O. The maximum work function increase caused by adsorption of D to saturation onto oxygen precovered Pd(110) decreases almost linearly with ΔφO of the oxygen precovered surface. On a surface with pre-adsorbed D however, the maximum Δφ increase contributed by oxygen adsorption decreases abruptly at ΔφD > 200 mV. This sharp change occurs at θD > 1 ML and is believed to be associated with the development of the reconstructed (1 × 2) phase of D/Pd(110).  相似文献   

17.
Two-loop radiative mechanism, when combined with an U(1)L symmetry generated by LeLμLτ (=L′), is shown to provide an estimate of Δm2m2atm εme/mτ, where ε measures the U(1)L-breaking. Since Δm2atm 3.5×10−3 eV2, we find that Δm2 ε10−6 eV2, which will fall into the allowed region of the LOW solution to the solar neutrino problem for ε 0.1.  相似文献   

18.
We have investigated the growth mode and surface morphology of CaF2 film on Si(1 1 1)7×7 substrate by reflection high-energy electron diffraction (RHEED) using very weak electron beam and atomic force microscopy (AFM). It was found by RHEED intensity oscillation measurements and AFM observations that three-dimensional (3D) islands grow at RT; however, rather flat surface appears with two-dimensional (2D) islands around 300 °C. Especially, at high temperature of 700 °C, characteristic equilateral triangular terraces (or islands) with flat and wide shape grow with the tops directed toward [1 1 −2] of substrate Si(1 1 1). On the other hand, the desorption process of the CaF2 film due to electron stimulated desorption (ESD) was also examined. It was found that the ESD process at 300 °C forms characteristic equilateral triangular craters on the film surface with the tops (or corners) directed toward [−1 −1 2] of substrate Si(1 1 1), provided that the film was grown at 700 °C.  相似文献   

19.
Y. B. Zhao  R. Gomer 《Surface science》1991,250(1-3):81-89
The electron impact behavior of CO adsorbed on Pd1/W(110) was investigated. The desorption products observed were neutral CO, CO+, and O+. After massive electron impact residual carbon, C/W = 0.15, but not oxygen was also found, suggesting that energetic neutral O, not detected in a mass analyzer must also have been formed. Formation of β-CO, i.e., dissociated CO with C and O on the surface was not seen. The total disappearance cross section varies only slightly with coverage, ranging from 9 × 10 −18 cm2 at low to 5 × 10−18 cm2 at saturation (CO/W = 0.75). The cross section for CO+ formation varies from 4 × 10−22 cm2 at satura to 2 × 10−21 cm2 at low coverage. That for O+ formation is 1.4 × 10−22 cm2 at saturation and 2 × 10−21 cm2 Threshold energies are similar to those found previously [J.C. Lin and R. Gomer, Surf. Sci. 218 (1989) 406] for CO/W(110) and CO/Cu1/W(110) which suggests similar mechanisms for product formation, with the exception of β-CO on clean W(110). It is argued that the absence or presence of β-CO in ESD hinges on its formation or absence in thermal desorption, since electron impact is likely to present the surface with vibrationally and rotationally activated CO in all cases; β-CO formation only occurs on surfaces which can dissociate such CO. It was also found that ESD of CO led to a work function increase of the remaining Pd1/W(110) surface of 500 meV, which could be annealed out only at 900 K. This is attributed to surface roughness, caused by recoil momentum of energetic desorbing entities.  相似文献   

20.
The growth of PbI2 precipitates on single crystal substrates from colloidal solutions has been investigated with in air scanning tunneling microscopy and synchrotron-based X-ray photoelectron spectroscopy. The PbI2 growth on Rh(1 0 0) results in nano-clusters with lateral dimensions between 30 and 60 Å, consistent with earlier reports. However, the growth of PbI2 on a well-ordered iodinated Rh(1 0 0), denoted as (√2×√2)R45°-I, leads to atomically smooth PbI2 films having a hexagonal symmetry with lattice constant identical to the bulk value of 4.5 Å. The heteroepitaxy is believed to be effected by the atomic iodine monolayer that helps to accommodate large lattice mismatch between PbI2 and Rh surface with short-range van der Waals interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号