首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurement of the motion of the malleus umbo and stapes footplate during bone conduction (BC) stimulation was conducted in vitro in 26 temporal bones using a laser Doppler vibrometer over the frequency range 0.1 to 10 kHz. For lower frequencies, both ossicular sites followed the motion of the temporal bone. The differential motion between the malleus and the surrounding bone was greater than the differential motion of the stapes footplate; both resonated near 1.5 kHz. Different lesions were shown to affect the response: (1) a mass attached to the umbo lowered the resonance frequency of the ossicular vibration; (2) fixation of either the malleus or stapes increased the stiffness and shifted the resonance frequency upward; and (3) dislocation of the incudo-stapedial joint did not significantly affect the ossicular vibration. The sound radiated from the tympanic membrane was approximately 85 dB SPL at an umbo differential velocity of 1 mm/s for low frequencies in an open ear canal and about 10 dB higher for an occluded one; at higher frequencies (above 2 kHz) resonances of the canal determine the response. It was also found that the motion between the footplate and promontory was within 5 dB when the specimen was stimulated orthogonal to the vibration direction of the ossicles than in line with the same. Measurement of the differential motion of the umbo in one live human skull gave similar response as the average result from the temporal bone specimens.  相似文献   

2.
Low-frequency stimuli (40- to 1000-Hz tones) have been used to correlate the motion of the 8-to 9-kHz place of the chinchilla basilar membrane with the cochlear microphonics recorded at the round window and with the responses of auditory nerve fibers with appropriate characteristic frequency. At the lowest stimulus frequencies, maximum displacement of the basilar membrane toward scala tympani occurs in near synchrony with maximum rarefaction at the eardrum and maximum negativity at the round window; at higher frequencies, the mechanical and microphonic response phases progressively lag rarefaction, reaching - 240 deg at 1000 Hz. At most frequencies (40-1000 Hz) near-threshold neural responses, once corrected for neural travel-time and synaptic delays, somewhat lead (by some 40 deg) maximal scala tympani displacement and maximal negativity of the round window microphonics. The variation of sensitivity with frequency is similar for basilar membrane displacement and microphonic responses: Under open-bulla conditions, sensitivity is constant for frequencies between 100 and 1000 Hz; below 100 Hz, sensitivity decreases at rates close to 12 dB/oct toward lower frequencies. Neural response sensitivity matches BM displacement more closely than BM velocity.  相似文献   

3.
The ear canal sound pressure and the malleus umbo velocity with bone conduction (BC) stimulation were measured in nine ears from five cadaver heads in the frequency range 0.1 to 10 kHz. The measurements were conducted with both open and occluded ear canals, before and after resection of the lower jaw, in a canal with the cartilage and soft tissues removed, and with the tympanic membrane (TM) removed. The sound pressure was about 10 dB greater in an intact ear canal than when the cartilage part of the canal had been removed. The occlusion effect was close to 20 dB for the low frequencies in an intact ear canal; this effect diminished with sectioning of the canal. At higher frequencies, the resonance properties of the ear canal determined the effect of occluding the ear canal. Sectioning of the lower jaw did not significantly alter the sound pressure in the ear canal. The sound radiated from the TM into the ear canal was investigated in four temporal bone specimens; this sound is significantly lower than the sound pressure in an intact ear canal with BC stimulation. The malleus umbo velocity with air conduction stimulation was investigated in nine temporal bone specimens and compared with the umbo velocity obtained with BC stimulation in the cadaver heads. The results show that for a normal open ear canal, the sound pressure in the ear canal with BC stimulation is not significant for BC hearing. At threshold levels and for frequencies below 2 kHz, the sound in the ear canal caused by BC stimulation is about 10 dB lower than air conduction hearing thresholds; this difference increases at higher frequencies. However, with the ear canal occluded, BC hearing is dominated by the sound pressure in the outer ear canal for frequencies between 0.4 and 1.2 kHz.  相似文献   

4.
Single unit activity was recorded in the auditory nerves of chinchillas. Period histograms were constructed for responses to tones with frequencies 30-1000 Hz. For low-frequency tones at near-threshold levels, peak period histogram phases for low- and medium-best-frequency (BF) neurons (less than or equal to kHz) ranged from synchronous with condensation at the eardrum to 90 degrees leading it. At near-threshold (but high absolute) levels, high-BF (greater than or equal to 8 kHz) neurons responded in phase with rarefaction. At even higher levels, period histograms for responses of high-BF neurons tended to become bimodal, with one of the modes lagging rarefaction by 90 degrees. Using cochlear microphonics as an indicator of basilar membrane (BM) displacement, at threshold levels, response phase of low- and medium-BF neurons fall within a range between displacement and velocity of the BM toward scala vestibuli. High-BF neurons respond, at threshold (but high) intensities, in phase with BM displacement toward scala tympani. The rates of growth of frequency sensitivity in responses of low-BF (+ 18 dB/oct) and high-BF (+ 12 dB/oct) neurons are consistent with preferred response phases corresponding to BM SV velocity and ST displacement, respectively. At supra-threshold levels high-BF neurons may fire preferentially to both scala tympani displacement and scala vestibuli velocity. These results support the notion that, for high-intensity, low-frequency stimuli, OHC hyperpolarization can induce excitation of the dendrites innervating IHCs.  相似文献   

5.
The study by Brenkman et al. [J. Acoust. Soc. Am. 82, 1646-1654 (1987)] of malleus umbo and anterior crus of stapes displacement in 14 human temporal bones shows a mean -7.3-dB/oct slope above 1.0 kHz for stapes displacement in response to a 80-dB SPL input at the eardrum. The slope they obtained for midfrequency (1.0-4.0 kHz) stapes displacement is significantly flatter than what was found previously [Gyo et al., Acta Otolaryngol. 103, 87-95 (1987); Gundersen, Prostheses in the Ossicular Chain (University Park, Baltimore, MD, 1971); Kringlebotn and Gundersen, J. Acoust. Soc. Am. 77, 159-164 (1985); Vlaming and Feenstra, Clin. Otolaryngol. 11, 353-363 (1986a)]; in these studies, stapes displacement rolled off at -12.0 to -14.9 dB/oct above 1.0 kHz. It appears that their mean midfrequency stapes displacement slope has been flattened by some unusual results in a small number of ears. Possible reasons for these results are discussed.  相似文献   

6.
Displacement-frequency characteristics of the stapes footplate were measured in five human temporal bones before and after draining the vestibule. Measurements were made in the 0.125-8 kHz range at 80 dB input sound pressure level, using a laser Doppler vibrometer. A circuit model was also used to predict stapes displacement. The temporal bone studies show a slight decrease in stapes footplate displacement at low frequency, and little change above 1 kHz. The displacement change is not as great as that found by other investigators or predicted by the model. There is little difference in stapes motion in temporal bones when the inner ear is intact or drained.  相似文献   

7.
A piezoelectric (PZE) vibrator was used to mechanically drive the columella footplate and stimulate the cochlea of chicken embryos and hatchlings. Our objectives were to characterize the motion of the PZE driver and determine the relationship between columella footplate motion (displacement/ velocity) and the cochlear microphonic recorded from the recessus scala tympani (CMrst). At each frequency, displacement of the PZE driver probe tip was linearly related to the applied voltage over a wide range of attenuation levels (-60 to -20 dBre:50 Vp-p). The mean displacement across frequencies (100-4000 Hz) was 0.221+/-0.042 micromp-p for a constant applied voltage level of -20 dBre:50 Vp-p. Displacement was within 1.5 dB of the mean for this stimulus level at all frequencies except for 4000 Hz, where it was approximately 3 dB higher (p < 0.01). CMrst amplitudes in hatchlings were larger than amplitudes in embryos (p=0.003). For a given frequency, CM was linearly related to footplate displacement and velocity at both ages. The transform ratio of CMrst/A (CM amplitude/displacement) increased at approximately 6 dB/octave at frequencies between 100 and 1000 Hz in hatchlings suggesting that cochlear impedance (Zc) was resistive at these frequencies. In a large fraction of the embryos, Zc exhibited reactive behavior.  相似文献   

8.
Previous physiological studies investigating the transfer of low-frequency sound into the cochlea have been invasive. Predictions about the human cochlea are based on anatomical similarities with animal cochleae but no direct comparison has been possible. This paper presents a noninvasive method of observing low frequency cochlear vibration using distortion product otoacoustic emissions (DPOAE) modulated by low-frequency tones. For various frequencies (15-480 Hz), the level was adjusted to maintain an equal DPOAE-modulation depth, interpreted as a constant basilar membrane displacement amplitude. The resulting modulator level curves from four human ears match equal-loudness contours (ISO226:2003) except for an irregularity consisting of a notch and a peak at 45 Hz and 60 Hz, respectively, suggesting a cochlear resonance. This resonator interacts with the middle ear stiffness. The irregularity separates two regions of the middle ear transfer function in humans: A slope of 12 dB/octave below the irregularity suggests mass-controlled impedance resulting from perilymph movement through the helicotrema; a 6-dB/octave slope above the irregularity suggests resistive cochlear impedance and the existence of a traveling wave. The results from four guinea pig ears showed a 6-dB/octave slope on either side of an irregularity around 120 Hz, and agree with published data.  相似文献   

9.
Basilar membrane (BM) velocity was measured at a site 3.5 mm from the basal end of the chinchilla cochlea using the M?ssbauer technique. The threshold of the compound action potential recorded at the round window in response to tone bursts was used as an indicator of the physiological state of the cochlea. The BM input-output functions display a compressive nonlinearity for frequencies around the characteristic frequency (CF, 8 to 8.75 kHz), but are linear for frequencies below 7 and above 10.5 kHz. In preparations with little surgical damage, isovelocity tuning curves at 0.1 mm/s are sharply tuned, have Q10's of about 6, minima as low as 13 dB SPL, tip-to-tail ratios (at 1 kHz) of 56 to 76 dB, and high-frequency slopes of about 300 dB/oct. These mechanical responses are as sharply tuned as frequency-threshold curves of chinchilla auditory nerve fibers with corresponding CF. There is a progressive loss of sensitivity of the mechanical response with time for the frequencies around CF, but not for frequencies on the tail of the tuning curve. In some experiments the nonlinearity was maintained for several hours, in spite of a considerable loss of sensitivity of the BM response. High-frequency plateaus were observed in both isovelocity tuning curves and phase-frequency curves.  相似文献   

10.
For 68 temporal bones, frequency curves for the round window volume displacement have been measured for a constant sound pressure at the eardrum. Phase curves were measured for 33 of the specimens. The levels averaged amplitude curve is approximately flat below 1 kHz, where the round window volume displacement per unit sound pressure at the eardrum is 6.8 X 10(-5) mm3/Pa, and falls off by about 15 dB/oct at higher frequencies. For the 20 ears having the largest sound transmission magnitude at low frequencies, the corresponding amplitude curve is displaced about 5 dB towards higher levels. The phase of the round window volume displacement lags the eardrum sound pressure phase. In average for 33 temporal bones, the phase lag increases from zero at the lowest frequencies to pi near 2 kHz and to about 1.5 pi at 10 kHz.  相似文献   

11.
For 23 cadaver ears from Norwegian cattle, frequency characteristics for the round-window volume displacement relative to the sound pressure at the eardrum have been measured, and are compared to earlier results for human ears [M. Kringlebotn and T. Gundersen, J. Acoust. Soc. Am. 77(1), 159-164 (1985)]. For human as well as for cattle ears, mean amplitude curves have peaks at about 0.7 kHz. At lower frequencies, the mean amplitude for cattle ears is about 5 dB smaller than for human ears. The amplitude curves cross at about 2 kHz, and toward higher frequencies the amplitude for cattle ears becomes increasingly larger. If amplitude curves are roughly approximated by straight lines above 1 kHz, the slope for cattle ears is about -5 dB/octave as compared to about -15 dB/octave for human ears. The phase of the round-window volume displacement lags behind the phase of the sound pressure at the tympanic membrane. The phase lag is close to zero below 0.2 kHz, but increases to about 3.5 pi at 20 kHz for cattle ears, as compared to less than 2 pi for human ears. Further investigations are needed in order to explain the observed differences. Sound transmission in the ear decreases with an increasing static pressure difference across the tympanic membrane, especially at frequencies below 1 kHz, where pressure differences of 10 and 60 cm water cause mean transmission losses of about 10 and 26 dB, respectively, the losses being somewhat larger for overpressures than for underpressures in the ear canal. At higher frequencies, the transmission losses are smaller. For small overpressures, and in a limited frequency range near 3 kHz, even some transmission enhancement may occur. Static pressure variations in the inner ear have only a minor influence on sound transmission. Static pressures relative to the middle ear in the range 0-60 cm water cause mean sound transmission losses less than 5 dB below 1 kHz, and negligible losses at higher frequencies.  相似文献   

12.
Drive pressure to stapes velocity (V(st)) transfer function measurements are collected and compared for human cadaveric temporal bones with the drive pressure alternately on the ear canal (EC) and middle ear cavity (MEC) sides of the tympanic membrane (TM), in order to predict the performance of proposed middle-ear implantable acoustic hearing aids, as well as provide additional data for examining human middle ear mechanics. The chief finding is that, in terms of the V(st) response, MEC stimulation performs at least as well as EC stimulation below 8 kHz, provided that the EC is unplugged. Plugging the EC causes a reduced response for MEC drive below 2 kHz, due to a corresponding reduction of the pressure difference between the two sides of the TM. Between 8 and 11 kHz, the MEC drive transfer functions feature an approximately 17 dB drop in magnitude below the EC drive case, the cause of which remains unknown. The EC drive transfer functions reported here feature significantly less magnitude roll-off above 1 kHz than previous studies [with a slope of -2.3 vs -6.7 dB/octave for Aibara et al., Hear. Res. 152, 100-109 (2001)], and significantly more phase group delay (134 vs 62 micros for Aibara et al.).  相似文献   

13.
Middle-ear sound transmission was evaluated as the middle-ear transfer admittance H(MY) (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil's audiometric range. Similar measurements were performed in two laboratories. The H(MY) magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The H(MY) phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20-29 micros delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from H(MY) and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram.  相似文献   

14.
One way medial efferents are thought to inhibit responses of auditory-nerve fibers (ANFs) is by reducing the gain of the cochlear amplifier thereby reducing motion of the basilar membrane. If this is the only mechanism of medial efferent inhibition, then medial efferents would not be expected to inhibit responses where the cochlear amplifier has little effect, i.e., at sound frequencies in the tails of tuning curves. Inhibition at tail frequencies was tested for by obtaining randomized rate-level functions from cat ANFs with high characteristic frequencies (CF > or = 5 kHz), stimulated with tones two or more octaves below CF. It was found that electrical stimulation of medial efferents can indeed inhibit ANF responses to tail-frequency tones. The amplitude of efferent inhibition depended on both sound level (largest near to threshold) and frequency (largest two to three octaves below CF). On average, inhibition of high-CF ANFs responding to 1 kHz tones was around 5 dB. Although an efferent reduction of basilar-membrane motion cannot be ruled out as the mechanism producing the inhibition of ANF responses to tail frequency tones, it seems more likely that efferents produce this effect by changing the micromechanics of the cochlear partition.  相似文献   

15.
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (f(p)=0.5-8.0 kHz) over a 40 dB range of probe levels (L(p)). Suppressor frequencies (f(s)) ranged from -2.0 to 0.7 octaves re: f(p), and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for "best" f(s) slightly higher than f(p). SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best f(s), and shallow slopes near best f(s), which indicated compressive growth close to 0.3 dBdB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower L(p) with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing L(p) and increasing f(p) at the lowest L(p) from 32 to 45 dB for f(p) from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane.  相似文献   

16.
Study of mechanical motions in the basal region of the chinchilla cochlea   总被引:3,自引:0,他引:3  
Measurements from the 1-4-mm basal region of the chinchilla cochlea indicate the basilar membrane in the hook region (12-18 kHz) vibrates essentially as it does more apically, in the 5-9-kHz region. That is, a compressive nonlinearity in the region of the characteristic frequency, amplitude-dependent phase changes, and a gain relative to stapes motion that can attain nearly 10,000 at low levels. The displacement at threshold for auditory-nerve fibers in this region (20 dB SPL) was approximately 2 nm. Measurements were made at several locations in individual animals in the longitudinal and radial directions. The results indicate that there is little variability in the phase of motion radially and no indication of higher-order modes of vibration. The data from the longitudinal studies indicate that there is a shift in the location of the maximum with increasing stimulus levels toward the base. The cochlear amplifier extends over a 2-3-mm region around the location of the characteristic frequency.  相似文献   

17.
When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The map is based on Wiener-kernel analysis of responses to noise of auditory-nerve fibers corroborated by measurements of vibrations at several basilar-membrane sites. SFOAE group delays were similar to, or shorter than, basilar-membrane group delays for frequencies >4 kHz and <4 kHz, respectively. Such short delays contradict the generally accepted "theory of coherent reflection filtering" [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)], which predicts that the group delays of SFOAEs evoked by low-level tones approximately equal twice the basilar-membrane group delays. The results for frequencies higher than 4 kHz are compatible with hypotheses of SFOAE propagation to the stapes via acoustic waves or fluid coupling, or via reverse basilar membrane traveling waves with speeds corresponding to the signal-front delays, rather than the group delays, of the forward waves. The results for frequencies lower than 4 kHz cannot be explained by hypotheses based on waves propagating to and from their characteristic places in the cochlea.  相似文献   

18.
Masked tonal thresholds were measured for a beluga whale at one noise level and 32 frequencies between 40 Hz and 115 kHz. Critical ratios were estimated and compared with those previously measured for the bottlenose dolphin. Beluga whale critical ratios were found to be about 3 dB lower than those of the bottlenose dolphin. Absolute tonal thresholds were extended below previous measurements to 40 Hz.  相似文献   

19.
20 Hz~10 kHz光纤水听器相移灵敏度校准   总被引:1,自引:2,他引:1  
陈毅  张军  张敏  王利威 《光子学报》2014,40(11):1686-1691
利用相位生成载波解调技术精确测量光纤水听器的光相移量,在20 Hz~10 kHz频率范围实现了光纤水听器探头相移灵敏度的校准.20 Hz~1.25 kHz频段采用驻波管比较法进行校准,1.25 kHz~10 kHz频段采用自由场脉冲比较法进行校准.利用本文建立的校准系统,对TMD 35#光纤水听器的相移灵敏度进行校准,校准结果表明,两种方法测得的相移灵敏度具有很好的一致性,在1.25 kHz频率点的相移灵敏度值偏差为0.8 dB.不确定度分析表明,该校准系统的扩展不确定度(k=2)为0.9 dB.  相似文献   

20.
低频标准真空涨落的测量   总被引:1,自引:0,他引:1       下载免费PDF全文
薛佳  秦际良  张玉驰  李刚  张鹏飞  张天才  彭堃墀 《物理学报》2016,65(4):44211-044211
采用自平衡零拍方案, 对低频段的标准量子真空涨落进行了测量. 实验确定了该系统的饱和光功率约为3.2 mW. 在10 Hz–400 kHz的频率范围内, 系统的共模抑制比平均为55 dB, 在100 Hz处高达63 dB, 对激光经典技术噪声具有很强的抑制作用. 当入射光功率为400 μ W 时, 真空涨落噪声达到11 dB. 此低频量子真空噪声探测系统可广泛应用于量子计量和量子光学等研究领域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号