首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study the implication of the primitivity of a matrix near-ring ${\mathbb{M}_n(R) (n >1 )}$ and that of the underlying base near-ring R. We show that when R is a zero-symmetric near-ring with identity and ${\mathbb{M}_n(R)}$ has the descending chain condition on ${\mathbb{M}_n(R)}$ -subgroups, then the 0-primitivity of ${\mathbb{M}_n(R)}$ implies the 0-primitivity of R. It is not known if this is true when the descending chain condition on ${\mathbb{M}_n(R)}$ is removed. On the other hand, an example is given to show that this is not true in the case of generalized matrix near-rings.  相似文献   

2.
When \mathbbK{\mathbb{K}} is an arbitrary field, we study the affine automorphisms of Mn(\mathbbK){{\rm M}_n(\mathbb{K})} that stabilize GLn(\mathbbK){{\rm GL}_n(\mathbb{K})}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # ${\mathbb{K} > 2}${\mathbb{K} > 2}. We include a short new proof of the more general Flanders theorem for affine subspaces of Mp,q(\mathbbK){{\rm M}_{p,q}(\mathbb{K})} with bounded rank. We also find that the group of affine transformations of M2(\mathbbF2){{\rm M}_2(\mathbb{F}_2)} that stabilize GL2(\mathbbF2){{\rm GL}_2(\mathbb{F}_2)} does not consist solely of linear maps. Using the theory of quadratic forms over \mathbbF2{\mathbb{F}_2}, we construct explicit isomorphisms between it, the symplectic group Sp4(\mathbbF2){{\rm Sp}_4(\mathbb{F}_2)} and the symmetric group \mathfrakS6{\mathfrak{S}_6}.  相似文献   

3.
For n = 1, the space of ${\mathbb{R}}For n = 1, the space of \mathbbR{\mathbb{R}} -places of the rational function field \mathbbR(x1,?, xn){\mathbb{R}(x_1,\ldots, x_n)} is homeomorphic to the real projective line. For n ≥ 2, the structure is much more complicated. We prove that the space of \mathbbR{\mathbb{R}} -places of the rational function field \mathbbR(x, y){\mathbb{R}(x, y)} is not metrizable. We explain how the proof generalizes to show that the space of \mathbbR{\mathbb{R}} -places of any finitely generated formally real field extension of \mathbbR{\mathbb{R}} of transcendence degree ≥ 2 is not metrizable. We also consider the more general question of when the space of \mathbbR{\mathbb{R}} -places of a finitely generated formally real field extension of a real closed field is metrizable.  相似文献   

4.
Let X be a realcompact space and H:C(X)?\mathbbR{H:C(X)\rightarrow\mathbb{R}} be an identity and order preserving group homomorphism. It is shown that H is an evaluation at some point of X if and only if there is j ? C(\mathbbR){\varphi\in C(\mathbb{R})} with ${\varphi(r)>\varphi(0)}${\varphi(r)>\varphi(0)} for all r ? \mathbbR-{0}{r\in\mathbb{R}-\{0\}} for which H°j = j°H{H\circ\varphi=\varphi\circ H} . This extends (and unifies) classical results by Hewitt and Shirota.  相似文献   

5.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

6.
Let ${\Phi : \mathbb{R} \to [0, \infty)}Let F: \mathbbR ? [0, ¥){\Phi : \mathbb{R} \to [0, \infty)} be a Young function and let f = (fn)n ? \mathbbZ+{f = (f_n)_n\in\mathbb{Z}_{+}} be a martingale such that F(fn) ? L1{\Phi(f_n) \in L_1} for all n ? \mathbbZ+{n \in \mathbb{Z}_{+}} . Then the process F(f) = (F(fn))n ? \mathbbZ+{\Phi(f) = (\Phi(f_n))_n\in\mathbb{Z}_{+}} can be uniquely decomposed as F(fn)=gn+hn{\Phi(f_n)=g_n+h_n} , where g=(gn)n ? \mathbbZ+{g=(g_n)_n\in\mathbb{Z}_{+}} is a martingale and h=(hn)n ? \mathbbZ+{h=(h_n)_n\in\mathbb{Z}_{+}} is a predictable nondecreasing process such that h 0 = 0 almost surely. The main results characterize those Banach function spaces X such that the inequality ||h||XC ||F(Mf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Mf)} \|_X} is valid, and those X such that the inequality ||h||XC ||F(Sf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Sf)} \|_X} is valid, where Mf and Sf denote the maximal function and the square function of f, respectively.  相似文献   

7.
Let J:\mathbbR ? \mathbbRJ:\mathbb{R} \to \mathbb{R} be a nonnegative, smooth compactly supported function such that ò\mathbbR J(r)dr = 1. \int_\mathbb{R} {J(r)dr = 1.} We consider the nonlocal diffusion problem
$ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )} $ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )}   相似文献   

8.
Let C( \mathbbRm ) C\left( {{\mathbb{R}^m}} \right) be the space of bounded and continuous functions x:\mathbbRm ? \mathbbR x:{\mathbb{R}^m} \to \mathbb{R} equipped with the norm
|| x ||C = || x ||C( \mathbbRm ): = sup{ | x(t) |:t ? \mathbbRm } \left\| x \right\|C = {\left\| x \right\|_{C\left( {{\mathbb{R}^m}} \right)}}: = \sup \left\{ {\left| {x(t)} \right|:t \in {\mathbb{R}^m}} \right\}  相似文献   

9.
10.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

11.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

12.
We prove the existence of a global heat flow u : Ω ×  \mathbbR+ ? \mathbbRN {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}, N > 1, satisfying a Signorini type boundary condition u(∂Ω ×  \mathbbR+ {\mathbb{R}^{+}}) ⊂  \mathbbRn {\mathbb{R}^{n}}), n \geqslant 2 n \geqslant 2 , and \mathbbRN {\mathbb{R}^{N}}) with boundary [`(W)] \bar{\Omega } such that φ(∂Ω) ⊂ \mathbbRN {\mathbb{R}^{N}} is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.  相似文献   

13.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

14.
In the first part of the paper we introduce the theory of bundles with negatively curved fibers. For a space X there is a forgetful map F X between bundle theories over X, which assigns to a bundle with negatively curved fibers over X its subjacent smooth bundle. Our main result states that, for certain k-spheres ${\mathbb{S}^k}In the first part of the paper we introduce the theory of bundles with negatively curved fibers. For a space X there is a forgetful map F X between bundle theories over X, which assigns to a bundle with negatively curved fibers over X its subjacent smooth bundle. Our main result states that, for certain k-spheres \mathbbSk{\mathbb{S}^k}, the forgetful map F\mathbbSk{F_{\mathbb{S}^k}} is not one-to-one. This result follows from Theorem A, which proves that the quotient map MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} is not trivial at some homotopy levels, provided the hyperbolic manifold M satisfies certain conditions. Here MET  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)} is the space of negatively curved metrics on M and T  sec < 0 (M) = MET  sec < 0 (M)/ DIFF0(M){\mathcal{T}^{\,\,sec <0 }(M) = \mathcal{MET}^{\,\,sec <0 }(M)/ {\rm DIFF}_0(M)} is, as defined in [FO2], the Teichmüller space of negatively curved metrics on M. In particular we conclude that T  sec < 0 (M){\mathcal{T}^{\,\,sec <0 }(M)} is, in general, not connected. Two remarks: (1) the nontrivial elements in pkMET  sec < 0 (M){\pi_{k}\mathcal{MET}^{\,\,sec <0 }(M)} constructed in [FO3] have trivial image by the map induced by MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} ; (2) the nonzero classes in pkT  sec < 0 (M){\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)} constructed in [FO2] are not in the image of the map induced by MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} ; the nontrivial classes in pkT  sec < 0 (M){\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)} given here, besides coming from MET  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)} and being harder to construct, have a different nature and genesis: the former classes – given in [FO2] – come from the existence of exotic spheres, while the latter classes – given here – arise from the non-triviality and structure of certain homotopy groups of the space of pseudo-isotopies of the circle \mathbbS1{\mathbb{S}^1}. The strength of the new techniques used here allowed us to prove also a homology version of Theorem A, which is given in Theorem B.  相似文献   

15.
We study necessary and sufficient conditions for embeddings of Besov and Triebel-Lizorkin spaces of generalized smoothness B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), respectively, into generalized H?lder spaces L¥,rm(·)( \mathbb Rn)\Lambda_{\infty,r}^{\mu(\cdot)}(\ensuremath {\ensuremath {\mathbb {R}}^{n}}). In particular, we are able to characterize optimal embeddings for this class of spaces provided q>1. These results improve the embedding assertions given by the continuity envelopes of B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), which were obtained recently solving an open problem of D.D. Haroske in the classical setting.  相似文献   

16.
We prove that the moduli space \mathfrakML{\mathfrak{M}_L} of Lüroth quartics in \mathbbP2{\mathbb{P}^2}, i.e. the space of quartics which can be circumscribed around a complete pentagon of lines modulo the action of PGL3 (\mathbbC){\mathrm{PGL}_3 (\mathbb{C})} is rational, as is the related moduli space of Bateman seven-tuples of points in \mathbbP2{\mathbb{P}^2}.  相似文献   

17.
Spherical monogenics can be regarded as a basic tool for the study of harmonic analysis of the Dirac operator in Euclidean space \mathbb Rm{{\mathbb R}^m}. They play a similar role as spherical harmonics do in case of harmonic analysis of the Laplace operator on \mathbb Rm{{\mathbb R}^m}. Fix the direct sum \mathbb Rm=\mathbb Rp ?\mathbb Rq{{\mathbb R}^m={\mathbb R}^p \oplus {\mathbb R}^q}. In this article, we will study the decomposition of the space Mn(\mathbb Rm, \mathbb Cm){{\mathcal M}_n({\mathbb R}^m, {\mathbb C}_m)} of spherical monogenics of order n under the action of Spin(p) × Spin(q). As a result, we obtain a Spin(p) × Spin(q)-invariant orthonormal basis for Mn(\mathbb Rm, \mathbb Cm){{\mathcal M}_n({\mathbb R}^m, {\mathbb C}_m)}. In particular, using the construction with p = 2 inductively, this yields a new orthonormal basis for the space Mn(\mathbb Rm, \mathbb Cm){{\mathcal M}_n({\mathbb R}^m, {\mathbb C}_m)}.  相似文献   

18.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号