首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Er3O2F5: An Erbium Oxide Fluoride with Vernier‐Type Structure Attempts to synthesize multinary erbium‐trifluoride derivatives (e. g. Er3F[Si3O10], Er4F2[Si2O7][SiO4], CsEr2F7, and RbEr3F10) from mixtures of ErOF‐contaminated erbium trifluoride (ErF3) itself and appropriate other components (such as Er2O3 and SiO2 or CsF and RbF, respectively) frequently resulted in the formation of pale pink, transparent, lath‐shaped single crystals of Er3O2F5 (orthorhombic, Pnma; a = 562.48(5), b = 1710.16(14), c = 537.43(4) pm; Z = 4) as by‐product, typically after seven days at 800 °C and regardless of the applied reaction‐container material (evacuated torch‐sealed silica or silica‐jacketed arc‐welded tantalum capsules). Its crystal structure, often described as a vernier‐type arrangement consisting of two interpenetrating and almost misfitting lattices (ErOF and ErF3), contains two crystallographically different Er3+ cations in the eight‐ and seven‐plus‐one‐fold anionic coordination of bicapped trigonal prisms. Whereas (Er1)3+ carries four O2? and F? anions each, (Er2)3+ resides in the neighbourhood of only two O2?, but five plus one F? anions. As the main structural feature, however, one can consider O2?‐centred (Er3+)4 tetrahedra which share common edges to form linear double strands of the composition . Running parallel to the [100] direction and assembling like a hexagonal closest rod‐packing, their electroneutralization and three‐dimensional interconnection is achieved by three crystallographically independent F? anions (d(F??Er3+) = 221 ? 251 plus 281 pm) in three‐ and two‐plus‐two‐fold coordination of the Er3+ cations, respectively.  相似文献   

10.
11.
12.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

13.
14.
15.
The single crystals of Ba2Cd(B3O6)2 were grown by the spontaneous crystallization method for the first time. They crystallize in the centrosymmetric trigonal space group R$\bar{3}$ with a = 7.143(3) Å, c = 17.405(16) Å, and Z = 3. The structure is characterized by isolated B3O6 units, and the Ba2+ and Cd2+ cations connect with B3O6 rings to form three dimensional structure. The TG/DSC and XRD results reveal that Ba2Cd(B3O6)2 melts congruently. First‐principles electronic structure calculation performed with the density functional theory (DFT) method shows that the calculated bandgaps are 4.66 eV, which is in good agreement with the UV/Vis/NIR experimental value 4.59 eV. The calculation shows that the Ba2Cd(B3O6)2 crystal has a large birefringence (Δn = 0.0875–0.0569 from 270 nm to 2600 nm), which demonstrates that Ba2Cd(B3O6)2 is a potential birefringence crystal.  相似文献   

16.
17.
18.
KBe2BO3F2 (KBBF) is still the only practically usable crystal that can generate deep‐ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH4Be2BO3F2 (ABBF) and γ‐Be2BO3F (γ‐BBF), which not only overcome the layering but also can be used as next‐generation DUV NLO materials with the shortest type I phase‐matching second‐harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ‐BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal.  相似文献   

19.
20.
Fluorooxoborates, benefiting from the large optical band gap, high anisotropy, and ever‐greater possibility to form non‐centrosymmetric structures activated by the large polarization of [BOxF4?x](x+1)? building blocks, have been considered as the new fertile fields for searching the ultraviolet (UV) and deep‐UV nonlinear optical (NLO) materials. Herein, we report the first asymmetric alkaline‐earth metal fluorooxoborate SrB5O7F3, which is rationally designed by taking the classic Sr2Be2B2O7 (SBBO) as a maternal structure. Its [B5O9F3]6? fundamental building block with near‐planar configuration composed by two edge‐sharing [B3O6F2]5? rings in SrB5O7F3 has not been reported in any other borates. Solid state 19F and 11B magic‐angle spinning NMR spectroscopy verifies the presence of covalent B?F bonds in SrB5O7F3. Property characterizations reveal that SrB5O7F3 possesses the optical properties required for deep‐UV NLO applications, which make SrB5O7F3 a promising crystal that could produce deep‐UV coherent light by the direct SHG process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号