首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
2.
3.
Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron–hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red‐light irradiation for tungsten nitride. This work represents the first red‐light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization.  相似文献   

4.
5.
Low‐dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead‐free (C4H14N2)2In2Br10 single crystal with a unique zero‐dimensional (0D) structure constituted by [InBr6]3? octahedral and [InBr4]? tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 μs. Computational and experimental studies unveil that an excited‐state structural distortion in [InBr6]3? octahedral units enables the formation of intrinsic self‐trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs‐TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long‐lived and broad STE‐based emission behavior.  相似文献   

6.
Structural colors have profound implications in the fields of pigments, displays and sensors, but none of the current non‐iridescent photonic materials can restore their functions after mechanical damage. Herein, we report the first self‐healable organogel nanocomposites with angle‐independent structural colors. The organogel nanocomposites were prepared through the co‐assembly of oleophilic silica nanoparticles, silicone‐based supramolecular gels, and carbon black. The organogel system enables amorphous aggregation of silica nanoparticles and the angle‐independent structural colors in the nanocomposites. Moreover, the hydrogen bonding in the supramolecular gel provides self‐healing ability to the system, and the structural colored films obtained could heal themselves in tens of seconds to restore storage modulus, structural color, and surface slipperiness from mechanical cuts or shear failure repeatedly.  相似文献   

7.
8.
9.
10.
11.
Development of high‐performance organic thermoelectric (TE) materials is of vital importance for flexible power generation and solid‐cooling applications. Demonstrated here is the significant enhancement in TE performance of selenium‐substituted diketopyrrolopyrrole (DPP) derivatives. Along with strong intermolecular interactions and high Hall mobilities of 1.0–2.3 cm2 V?1 s?1 in doping‐states for polymers, PDPPSe‐12 exhibits a maximum power factor and ZT of up to 364 μW m?1 K?2 and 0.25, respectively. The performance is more than twice that of the sulfur‐based DPP derivative and represents the highest value for p‐type organic thermoelectric materials based on high‐mobility polymers. These results reveal that selenium substitution can serve as a powerful strategy towards rationally designed thermoelectric polymers with state‐of‐the‐art performances.  相似文献   

12.
13.
14.
We report the high‐pressure structural characterization of an organic polyiodide salt in which a progressive addition of iodine to triiodide groups occurs. Compression leads to the initial formation of discrete heptaiodide units, followed by polymerization to a 3D anionic network. Although the structural changes appear to be continuous, the insulating salt becomes a semiconducting polymer above 10 GPa. The features of the pre‐reactive state and the polymerized state are revealed by analysis of the computed electron and energy densities. The unusually high electrical conductivity can be explained with the formation of new bonds.  相似文献   

15.
16.
Tailoring the morphology of macroporous structures remains one of the biggest challenges in material synthesis. Herein, we present an innovative approach for the fabrication of custom macroporous materials in which pore size varies throughout the structure by up to an order of magnitude. We employed a valve‐based flow‐focusing junction (vFF) in which the size of the orifice can be adjusted in real‐time (within tens of milliseconds) to generate foams with on‐line controlled bubble size. We used the junction to fabricate layered and smoothly graded porous structures with pore size varying in the range of 80–800 μm. Additionally, we mounted the vFF on top of an extrusion printer and 3D‐printed constructs characterized by a predefined 3D geometry and a controlled, spatially varying internal porous architecture, such as a model of a bone. The presented technology opens new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction.  相似文献   

17.
18.
Photonic materials use photons as information carriers and offer the potential for unprecedented applications in optical and optoelectronic devices. In this study, we introduce a new strategy for photonic materials using metal–organic frameworks (MOFs) as the host for the rational construction of donor–acceptor (D–A) heterostructure crystals. We have engineered a rich library of heterostructure crystals using the MOF NKU‐111 as a host. NKU‐111 is based upon an electron‐deficient tridentate ligand (acceptor) that can bind to various electron‐rich guests (donors). The resulting heterocrystals exhibit spatially segregated multi‐color emission resulting from the guest‐dependent charge‐transfer (CT) emission. Spatially effective mono‐directional energy transfer results from tuning the energy gradient between adjacent domains through the selection of donor guest molecules, which suggests potential applications in integrated optical circuit devices, for example, photonic diodes, on‐chip signal processing, optical logic gates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号