首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Co@B8, Ru@B9, Co@B8, and Ru@B9 clusters are characterized by photoelectron spectroscopy and DFT calculations.  相似文献   

5.
6.
7.
The structure and bonding of a Pr‐doped boron cluster (PrB7) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7 is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7. Global minimum searches and comparison between experiment and theory show that PrB7 has a half‐sandwich structure with C6v symmetry. Chemical bonding analyses show that PrB7 can be viewed as a PrII7‐B73−] complex with three unpaired electrons, corresponding to a Pr (4f26s1) open‐shell configuration. Upon detachment of the 6s electron, the neutral PrB7 cluster is a highly stable PrIII7‐B73−] complex with Pr in its favorite +3 oxidation state. The B73− ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII7‐B73−] complexes.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Condensation of 1,8‐diamino‐3,6‐dichlorocarbazole with a series of disubstituted 1,3‐diiminoisoindolines, followed by treatment with BF3?OEt2 led to the formation of the corresponding core‐expanded boron(III) subphthalocyanine analogues. These air‐stable π‐conjugated boron(III) carbazosubphthalocyanines possess two boron‐containing seven‐membered‐ring units and a 16 π‐electron skeleton, and represent the first examples of antiaromatic boron(III) subphthalocyanine analogues as supported by spectroscopic and theoretical studies. The molecular structure of one of these compounds was unambiguously determined by single‐crystal X‐ray diffraction analysis. In contrast to typical boron(III) subphthalocyanines, which adopt a cone‐shaped structure, the π skeleton of this compound is almost planar.  相似文献   

15.
16.
17.
18.
19.
20.
A series of polyoxometalates (POMs) that incorporate the highest‐nuclearity Ln clusters that have been observed in such structures to date (Ln26 , Ln=La and Ce) are described, which exhibit giant multishell configurations (Ln⊂W6⊂Ln26⊂W100). Their structures are remarkably different from known giant POMs that feature multiple Ln ions. In particular, the incorporated Ln–O clusters with a nuclearity of 26 are significantly larger than known high‐nuclearity (≤10) Ln–O clusters in POM chemistry. Furthermore, they also contain the largest number of La and Ce centers for any POM reported to date and represent a new kind of rare giant POMs with more than 100 W atoms. Interestingly, the La26‐containing POM can undergo a single‐crystal to single‐crystal structural transformation in the presence of various transition‐metal ions, such as Cu2+, Co2+, and Ni2+, from an inorganic molecular nanocluster into an inorganic–organic hybrid extended framework that is built from POM building blocks with even higher‐nuclearity La28 clusters bridged by transition‐metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号