首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

17.
Contributions on the Bonding Behaviour of Oxygen in Inorganic Solids. III [1] Mn2P2O7, Mn2P4O12 und Mn2Si(P2O7)2 — Crystal Growth, Structure Refinements and Electronic Spectra of Manganese(II) Phosphates By chemical vapour transport reactions in a temperature gradient single crystals of Mn2P2O7 (1050 → 950 °C) and Mn2P4O12 (850 → 750 °C) have been obtained using P/I mixtures as transport agent. Mn2Si(P2O7)2 was crystallized by isothermal heating (850 °C, 8d; NH4Cl as mineralizer) of Mn2P4O12 und SiO2. In Mn2Si(P2O7)2 [C 2/c, a = 17.072(1)Å, b = 5.0450(4)Å, c = 12.3880(9)Å, β = 103.55(9)°, 1052 independent reflections, 97 variables, R1 = 0.023, wR2 = 0.061] the Mn2+ ions show compressed octahedral coordination (d¯Mn—O = 2.19Å). The mean distance d¯Mn—O = 2.18Å was found for the radially distorted octahedra [MnO6] in Mn2P4O12 [C 2/c, Z = 4, a = 12.065(1)Å, b = 8.468(1)Å, c = 10.170(1)Å, β = 119.29(1)°, 2811 independent reflections, 85 variables, R1 = 0.025, wR2 = 0.072]. Powder reflectance spectra of the three pink coloured manganese(II) phosphates have been measured. The spectra show clearly the influence of the low‐symmetry ligand fields around Mn2+. Observed d—d electronic transition energies and the results of calculations within the framework of the angular overlap model (AOM) are in good agreement. Bonding parameters for the manganese‐oxygen interaction in [Mn2+O6] chromophors as obtained from the AOM treatment (B, C, Trees correction α, eσ, eπ) are discussed.  相似文献   

18.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

19.
Synthesis, Crystal Structure and Spectroscopical Characterization of Palladium(II)‐Diphosphate Pd2P2O7 Pd2P2O7 is synthesized by heating (Tmax = 500 °C) stoichiometric amounts of PdO and phosphoric acid. Using chemical vapour transport experiments (850 °C → 750 °C, addition of PdCl2) Pd2P2O7 was crystallized. Pd2P2O7 adopts its own structure type (C 2/c (No. 15), Z = 4, a = 13,151(2) Å, b = 5,172(1) Å, c = 8,139(1) Å, β = 97,52(1)°, 1160 independent reflections, 55 variables, R1 = 0,021 and wR2 = 0,050). Square‐planar [PdO4]‐units are linked by diphosphate‐groups generating a 3D framework. Within this framework ribbons may be distinguished. Thus Pd2P2O7 might be described as palladium(II)‐[diphosphatopalladate(II)]. The results of various spectroscopic measurements (IR, Raman, UV/VIS, 31P‐MAS‐NMR) are reported and discussed within the context of the crystal structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号