首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

2.
The crystallization of complex phosphates from the melts of Cs2O-P2O5-CaO-MIII2O3 (MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/МIII=1. The fields of crystallization of CsCaP3O9, β-Ca2P2O7, Cs2CaP2O7, Cs3CaFe(P2O7)2, Ca9MIII(PO4)7 (MIII—Fe, Cr), Cs0.63Ca9.63Fe0.37(PO4)7 and CsCa10(PO4)7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa10(PO4)7 and Cs0.63Ca9.63Fe0.37(PO4)7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.  相似文献   

3.
《Solid State Sciences》2004,6(7):689-696
Two interesting neutral tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2·xH2O (phen=1,10-phenanthroline, EtOH=ethanol, M=Co, x=7, 1; M=Ni, x=6, 2) were hydrothermally prepared and structurally characterized. The mixed molybdenum–vanadium polyoxoanion [MoVI7MoVVIV8O40(PO4)]4− exist in both two complexes, which acts as a bridge to covalently link two pairs of transition metal complex fragments, generating neutral windmill-like trimetallic nanocluster polyoxometalates. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 reveal that antiferromagnetic exchange interaction exists in this type of trimetallic tetrasupporting heteropolyoxometalates.  相似文献   

4.
Mono benzoxazine appended N-capped amino bis(disubstitutedphenol) ligands [ II ( a–c )] upon reaction with VVO(OEt)3 in a 1 : 1 molar ratio in EtOH/MeOH give [{VVO}en(3,5-dtbb)3] ( 1 ), [{VVO}en(3-tb,5-mb)3] ( 2 ) and [{VVO}en(3,5-dmb)3] ( 3 ). During the reaction, the benzoxazine ring opens with the loss of methylene group and the newly formed ligands, N,N-bis(2-hydroxy-3,5-disubstitutedbenzyl)-N’-2-hydroxy-3,5-disubstituted benzyledene-1,2-diaminoethane [ III ( a–c )], behave as tribasic pentadentate in these complexes. Under similar conditions, when [MVIO2(acac)2] (M=Mo or W; Hacac=acetylacetone) reacts with II ( a–c ), these ligands retain their identity and form cis-[MVIO2] complexes, [{MoVIO2}{en(3,5-dtbb)2(6,8-dtbbenzox)}] ( 4 ), [{MoVIO2}{en(3-tb,5-mb)2(6-tb,8-mbbenzox)}] ( 5 ) and [{MoVIO2}{en(3,5-dmb)2(6,8-dmbenzox)}] ( 6 ), [{WVIO2}{en(3,5-dtbb)2(6,8-dtbbenzox)}] ( 7 ), and [{WVIO2}{en(3-tb,5-mb)2(6-tb,8-mbbenzox)}] ( 8 ). However, the benzoxazine ring ruptures in case of ligand IIc under these conditions and form [{WVIO2}{en(3,5-dmb)3}] ( 10 ), similar to complexes 1–3 . Complex [{WVIO2}{en(3,5-dmb)2(6,8-dmbenzox)}] ( 9 ), having structure similar to 4–8 , could only be obtained when the reaction was carried out in toluene. Not only 9 , even complexes 4–8 can be isolated in toluene. Rupturing of both benzoxazine rings has also been experienced when ligands 1,2-bis(6,8-disubstitutedbenzo[e][1,3]oxazin-3(4H)-yl)ethane [ I ( a–c )] react with [MVIO2(acac)2] (M=Mo or W) in MeOH and give salan type complexes [(MVIO2)en(3,5-dtbb)2] [M=Mo ( 11 ), M=W ( 14 )], [(MVIO2)en(3-tb,5-mb)4] [M=Mo ( 12 ), M=W ( 15 )] and [(MVIO2)en(3,5-dmb)4] [M=Mo ( 13 ), M=W ( 16 )]. Complexes 1–9 have been used as catalyst for the multicomponent Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and oxidative bromination of phenol derivatives.  相似文献   

5.
Double-Octahedra Clusters [V2O9] in the Crystal Structure of Vanadium (III) Diphosphate, V4(P2O7)3 . As the first example for MIII diphosphates the crystal structure of V4(P2O7)3 (“ I ”) has been determined by means of X-ray diffraction of single crystals. I – according to [7] obtainable by thermal interaction of V2O5, H3PO3, and H3PO4 – crystallizes orthorhombically (data see above); in the unit cell two kinds of isolated doubleoctahedra (clusters) [V2O9], having the symmetry Cs, exist. Due to a mutual face-connection of the octahedra, within these clusters relatively short V–V distances are resulting: 2.774(8) and 3.026(7) Å. The diphosphate anions, O3POPO34? (three kinds; each having the symmetry Cs and staggered conformation), exhibit POP bond angles of 170°, being remarkably large for non-centrosymmetry. Because of the [M2IIIO9] clusters in I , and also in the isostructural diphosphates Cr4(P2O7)3 and Fe4(P2O73), magnetic investigations seem to be challenged.  相似文献   

6.
New complex sodium lanthanide phosphate molybdates Na2MIII(MoO4)(PO4)(MIII=Tb, Dy, Ho, Er, Tm, Lu) have been synthesized by the ceramic method (T = 600°C, τ = 48 h), and their unit cell parameters have been determined. The structures of Na2MIII(MoO4)(PO4)(MIII = Dy, Ho, Er, Lu) were refined by the Rietveld method. The compounds are isostructural: they are orthorhombic (space group Ibca, Z = 8) and have layered structures. In the structures of phosphate molybdates, chains of MIIIO8 polyhedra and MoO4 tetrahedra are linked by PO4 tetrahedra to form layers. The MoO 4 2? anions are involved in dipole-dipole interaction. The sodium ions are arranged in the interlayer space. The compounds melt incongruently at 850–870°C.  相似文献   

7.
On the Diphosphates M4(P2O7)3 with M = V, Cr and the Electronic Spectra of Vanadium(III) and Chromium(III) Phosphates Single crystals of ochre colored or dark brown V4(P2O7)3 ( I ) can be obtained by thermal transformation of an amorphous intermediate synthesized from V2O5 and aqueous H3PO3 and H3PO4; brown crystals of Cr4(P2O7)3 ( II ) are formed during thermal decomposition of Cr(PO3)3, C. I and II are isostructural, crystallizing in orthorhombic space group Pbn21 or Pbnm with Z = 4 and lattice constants a = 9.601(2), b = 21.425(5), c = 7.470(4) Å and a = 9.38(1), b = 21.00(4), c = 7.26(2) Å, respectively. Probably due to slight substitution of vanadium(V) for phosphorus atoms (P:Vv ~ 40:1) nonstoichiometic phase composition is found for I prepared at T ~ 1400°C. I and II are characterized by IR and electronic spectroscopy; their electronic spectra are discussed in comparison with those of fourteen other VIII and CrIII phosphates. This includes a discussion of optical properties of CsCrP2O7 changing color from brown to green on change from daylight to artificial light. Some conclusions on the structural arrangement of I and II are drawn.  相似文献   

8.
The solid solutions (V1–xWx)OPO4 with β‐VOPO4 structure type (0.0 ≤ x ≤ 0.01) and αII‐VOPO4 structure type (0.04 ≤ x ≤ 0.26) were obtained from mixtures of VVOPO4 and WVOPO4 by conventional solid state reactions and by solution combustion synthesis. Single crystals of up to 3 mm edge length were obtained by chemical vapor transport (CVT) (800 → 700 °C, Cl2 as a transporting agent). Single crystal structure refinements of crystals at x = 0.10 [a = 6.0503(2) Å, c = 4.3618(4) Å, R1 = 0.021, wR2 = 0.058, 21 parameters, 344 independent reflections] and x = 0.26 [a = 6.0979(2) Å, c = 4.2995(1) Å, R1 = 0.030, wR2 = 0.081, 21 parameters, 346 independent reflections] confirm the αII‐VOPO4 structure type (P4/n, Z = 2) with mixed occupancy V/W for the metal site. Due to the specific redox behavior of W5+ and V5+, solid solutions (V1–xWx)OPO4 should be formulated as (VIVxVV1–2xWVIx)OPO4. The valence states of vanadium and tungsten are confirmed by XPS measurements. V4+ with d1 configuration was identified by EPR spectroscopy and magnetic measurements. Electronic spectra of the solid solutions show the IVCT(V4+ → V5+) and the LMCT(O2– → V5+). (V0.74W0.26)OPO4 powders exhibit semi‐conducting behavior (Eg = 0.7 eV).  相似文献   

9.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

10.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

11.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

12.
The structure determination of a single crystal with composition Rb3V1.63W2.37O9(PO4)2 shows that this phase belongs to the ‘KNbW’ type (K3Nb3WO9(PO4)2). This intersecting tunnel structure which consists of octahedral [MO3] chains interconnected with ‘MPO9’ units is closely related to the ‘KVW’-type (K3V2W2O9(PO4)2), and differs only from the latter by the relative orientation of the [MO3] chains. In the same way, the X-ray powder diffraction study of the phosphates A3V2W2O9(PO4)2 with A = Rb, Tl, Cs and Rb3VxW4 − x O9(PO4)2 (1.5 ≤ x ≤ 3), shows that they all belong to the same structural ‘KNbW’-type and not to the ‘KVW’-type. These results demonstrate the great flexibility of the ‘KNbW’ structure with regard to the ‘KVW’-structure only observed for one compound.  相似文献   

13.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

14.
A series of Ti4+-doped Li9V3???x Ti x (P2O7)3(PO4)2/C compounds have been prepared by using wet method. X-ray diffraction measurement shows that single phase region can be expressed as x?≤?0.10. The effects of substitution of Ti for V on the electrochemical properties of Li9V3???x Ti x (P2O7)3(PO4)2 compounds have been studied. Our investigations show that Ti doping can improve the electrochemical performance. The Li9V2.95Ti0.05(P2O7)3(PO4)2/C exhibits the best cycle performance and the highest first discharge capacity of 120.7 mAh g?1 at 0.2 C. The electrochemical impedance spectroscopy indicates that the charge transfer resistance initially decreases with x and then for x?>?0.05 increases monotonically with Ti4+ content.  相似文献   

15.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

16.
The synthesis and structural study of three new AII(SbV0.5FeIII0.5)(PO4)2 (ABa, Sr, Pb) phosphates belonging to the ASbFePO system were reported here for the first time. Structures of [Ba], [Sr] and [Pb] compounds, obtained by solid state reaction in air atmosphere, were determined at room temperature from X-ray powder diffraction using the Rietveld method. BaII(SbV0.5FeIII0.5)(PO4)2 features the yavapaiite-type structure, with space group C2/m, Z = 2 and a = 8.1568(4) Å; b = 5.1996(3) Å c = 7.8290(4) Å; β = 94.53(1)°. AII(SbV0.5FeIII0.5)(PO4)2 (ASr, Pb) compounds have a distorted yavapaiite structure with space group C2/c, Z = 4 and a = 16.5215(2) Å; b = 5.1891(1) Å c = 8.0489(1) Å; β = 115.70(1)° for [Sr]; a = 16.6925(2) Å; b = 5.1832(1) Å c = 8.1215(1) Å; β = 115.03(1)° for [Pb]. Raman and Infrared spectroscopic study was used to obtain further structural information about the nature of bonding in selected compositions.  相似文献   

17.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

18.
The synthesis and characterization of a previously unknown, rare organometallic-phosphate complex, {[Bu4N][(1,5-COD)Ir · HPO4]}n (1), is described. Characterization of 1 was accomplished by elemental analysis, electrospray mass spectrometry (ES-MS), and 1H and 13C NMR which established the symmetry of the product as at least C2 or Cs. The ES-MS reveals an interesting, Ir(I) to Ir(III) oxidative process with intense peaks displaying the 191Ir/193Ir isotopic distribution patterns expected for the fragments [(1,5-COD)IrIII(HPO4)2], [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)], and [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)2]. These fragments, in turn, provide evidence for a structure with two HPO42− groups attached to a single Ir, for example ring structures (of at least such C2 or Cs symmetry) such as {[Bu4N][(1,5-COD)Ir · HPO4]}2. Complex 1 is significant since it is known to be the preferred, compositionally precise precursor to the prototype example of a recently discovered class of novel, HPO42− and Bu4N+ stabilized nanoclusters, (Bu4N)2n2n+[Ir(0)n · (HPO4)n]2n. Such nanoclusters are being extended, via their analogous hydrogenphosphate-organometallic precursors (1,5-COD)M+ or 2+/HPO42− (M=Rh(I), Ru(II), Pt(II)) to their corresponding, catalytically active [M(0)n · (HPO4)n]2n nanoclusters.  相似文献   

19.
The first members of a promising new family of hybrid amino acid–polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium‐tungstoarsenate structural backbone, followed by crystallization with p‐methylbenzylammonium (p‐MeBzNH3+) cations, affords (p‐MeBzNH3)6K2(GlyH)[AsIII4(YIIIWVI3)WVI44YIII4O159(Gly)8‐ (H2O)14] ? 47 H2O ( 1 ) and enantiomorphs (p‐MeBzNH3)15(NleH)3 [AsIII4(MoV2MoVI2)WVI44YIII4O160(Nle)9(H2O)11][AsIII4(MoVI2WVI2)‐ WVI44YIII4O160(Nle)9(H2O)11] (generically designated 2 : L ‐Nle, 2 a ; D ‐Nle, 2 b ). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site‐selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small‐angle X‐ray scattering studies confirm maintenance of the structure of the polyanions of 2 , while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.  相似文献   

20.
Two novel lanthanum(III) silicate tellurites, namely, La4(Si5.2Ge2.8O18)(TeO3)4 and La2(Si6O13)(TeO3)2, have been synthesized by the solid state reactions and their structures determined by single crystal X-ray diffraction. The structure of La4(Si5.2Ge2.8O18)(TeO3)4 features a three-dimensional (3D) network composed of the [(Ge2.82Si5.18)O18]4− tetrahedral layers and the [La4(TeO3)4]4+ layers that alternate along the b-axis. The germanate-silicate layer consists of corner-sharing XO4 (X=Si/Ge) tetrahedra, forming four- and six-member rings. The structure of La2(Si6O13)(TeO3)2 is a 3D network composed of the [Si6O13]2− double layers and the [La2(TeO3)2]2+ layers that alternate along the a-axis. The [Si6O13]2− double layer is built by corner-sharing silicate tetrahedra, forming four-, five- and eight-member rings. The TeO32− anions in both compounds are only involved in the coordination with La3+ ions to form a lanthanum(III) tellurite layer. La4(Si5.2Ge2.8O18)(TeO3)4 is a wide band-gap semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号