首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a combined use of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) to the study of counterion condensation in ionic micelles. Small-angle neutron and X-ray scattering measurements have been carried out on two surfactants cetyltrimethylammonium bromide (CTABr) and cetyltrimethylammonium chloride (CTACl), which are similar but having different counterions. SANS measurements show that CTABr surfactant forms much larger micelles than CTACl. This is explained in terms of higher condensation of Br counterions than Cl counterions. SAXS data on these systems suggest that the Br counterions are condensed around the micelles over smaller thickness than those of Cl counterions.  相似文献   

2.
PEO—PPO—PEO triblock copolymer P85 [(EO)26(PO)39(EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering measurements show that triblock copolymer forms mixed micelles with detergent and the mixing of two components in the mixed micelles is uniform.  相似文献   

3.
The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCPSDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0.6 ± 0.05, respectively.  相似文献   

4.
Direct evidence that nuclei are formed during the induction period of crystallization is obtained for the first time by means of small-angle X-ray scattering (SAXS). Polyethylene (PE) was used as a model crystalline polymer. The nucleating agent was mixed with PE in order to increase the scattering intensity I x from nuclei as large as 104 times bigger than usual. I x increased soon after quenching to the crystallization temperature from the melt and saturated after some time. A new theory is proposed to estimate the size of the nuclei N, the number density distribution of nuclei with N at time t, f(t,N), and the induction time τ i, by analyzing the SAXS scattering intensity. The volume-averaged size of the nuclei was nearly the same as that of critical nuclei and does not change so much with time during the induction period. Lamellae start stacking much later than nuclei start forming.  相似文献   

5.
We carried out a small-angle neutron scattering (SANS) study of dynamically polarized polyethylene (PE) samples doped with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). The transmission of the PE with almost fully polarized neutrons (98.5%) increased with increasing the proton polarization, P. The incoherent scattering cross section decreased with increasing P. The effect of P on the polarized neutrons’ transmission and the incoherent scattering cross section agreed well with the theory. The q-dependence of the coherent scattering, which reflects a two-phase structure of PE composed of crystalline and amorphous domains, was kept unchanged by the proton polarization, but the intensity increased by a factor of 3 and 6 for P=+23% and −23%, respectively. The results mean that the contrast between the two phases was successfully enhanced by a dynamic nuclear polarization (DNP) technique. However, the enhancement is only 1/13–1/16 of the enhancement calculated by assuming a homogeneous polarization through the PE sample. The discrepancy suggests that P in amorphous domains (25%) should be higher than that in crystalline domains (22%) by 3%, which in turn may suggest the partial depolarization of proton spins on the way of the spin diffusion from amorphous domains, where TEMPO radicals localize, to crystalline domains.  相似文献   

6.
Thin films of silicon oxynitride have largely replaced pure silicon oxide films as gate and tunnel oxide films in modern technology due to their superior properties in terms of efficiency as boron barrier, resistance to electrical stress and high dielectric strength. A single chamber system for plasma enhanced chemical vapor deposition was employed to deposit different films of SiOxNyHz with 0.85 < x < 1.91. All films were previously characterized by Rutherford back-scattering and infrared spectroscopy to determine the stoichiometry and the presence of various bonding configurations of constituent atoms. We used X-ray reflectivity to determine the electron density profile across the depth, and we showed that the top layer is densified. Moreover, grazing incidence small-angle X-ray scattering was used to study inhomogeneities (clustering) in the films, and it is shown that plate-like inhomogeneities exist in the top and sphere-like particles at the bottom part of the film. Their shape and size depend on the stoichiometry of the films.  相似文献   

7.
Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein-surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.   相似文献   

8.
The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA with different concentrations of urea in D2O at pH 7.2 ± 0.2 were measured at room temperature. The scattering profile was fitted to a prolate ellipsoidal shape (a, b, b) of the protein witha = 52.2 Å andb = 24.2 Å. The change in the dimensions of the protein as it unfolds was found to be anisotropic. The radius of gyration of the compact form of the protein in solution decreased as the urea concentration was increased.  相似文献   

9.
Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride,o-toluidine hydrochloride andm-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions.  相似文献   

10.
We have performed small-angle polarized neutron scattering experiments of spherical Fe16N2 nano-particles, which are potential candidate materials for high density magnetic recording tape. The results were analyzed based on a core-shell model, and we evaluated the magnetic structure of the particles. The correlation between the magnetic structure and magnetic stability of the particles were discussed in terms of high density recordings.  相似文献   

11.
Precipitates of ceria were synthesized by homogeneous precipitation method using cerium nitrate and hexamethylenetetramine at 80°C. The precipitates were ground to fine particles of average size ∼0.7 μm. Circular disks with 10 mm diameter, 2 and 3 mm thickness were prepared from the green compacts by sintering at 1300° C for three different sintering times. Evolution of the pore structures in these specimens with sintering time was investigated by small-angle neutron scattering (SANS). The results show that the peak of the pore size distribution shifts towards the larger size with increasing sintering time although the extent of porosity decreases. This indicates that finer pores are eliminated from the system at a faster rate than the coarser ones as sintering proceeds and some of the finer pores coalesce to form bigger ones.  相似文献   

12.
ABSTRACT

The disaccharide trehalose has shown outstanding anti-aggregation properties for proteins, which are highly important for the possibility to treat neurodegenerative diseases, such as Alzheimer’s and Huntington’s disease. However, the role and mechanism of trehalose for such stabilising effects are still largely unknown, partly because a direct structural picture of how trehalose organises around proteins in an aqueous system is missing. Here we compare small-angle neutron scattering (SANS) data on myoglobin in aqueous solutions of either sucrose or trehalose, in order to investigate their effect on protein–protein interactions. We find that both trehalose and sucrose induces a well-defined protein–protein distance, which could explain why these inhibit protein–protein interactions and associated protein aggregation. It does not however explain the superior anti-aggregation effect of trehalose and suggests that the local solvent structures are highly important for explaining the protein stabilisation mechanism. In a broader perspective, these findings are important for understanding the role of sugars in biological stabilisation, and could provide a structural explanation for why trehalose is a promising candidate for the treatment of neurodegenerative and other protein aggregation related diseases.  相似文献   

13.
USANSPOL is a novel ultra-small-angle scattering technique with polarised neutrons for investigation of magnetic materials. It represents a polarised neutron extension to traditional USANS which works with unpolarised neutrons. The high angular resolution of this technique relies on the narrow reflection width of perfect crystal reflections and is employed in a double-crystal diffractometer. Corresponding to the μrad resolution of the set-up, micro-structures of the order of a few tenths of a micrometre up to a few tens of micrometres may be investigated. Neutron polarisation is achieved by insertion of birefringent magnetic prisms between the monochromator crystal and the sample. Rocking the analyser crystal produces a scattering pattern for both neutron spin states in a single measurement but well separated in reciprocal space. By this technique, we have recently studied various amorphous Galfenol soft-magnetic ribbons which were produced by spinning from melt at different manufacturing conditions. USANSPOL allows for a determination of domain sizes of the non-magnetised samples and a study of the growing of magnetically homogeneous regions with increasing externally applied magnetic field. The manufacturing process of the ribbons is reflected in the magnetic micro-structure of the different specimens.  相似文献   

14.
Magnetic small-angle scattering of non-polarized and polarized neutrons from ferrofluds (magnetite covered by oleic acid in benzene) is analyzed. A complex correlation in the magnetic structure is observed. It takes place at the length of more than the particle size, and has a core-shell-like organization. Along with it no spatial interparticle correlation in the nuclear structure is detected.  相似文献   

15.
Suspensions of solid lipid nanoparticles (SLNs) stabilized with emulsifiers have been extensively investigated (since the 1990s) as drug carriers, although details of their ultrastructure are poorly defined. Previously, a novel microwave‐assisted microemulsion‐based technique to prepare SLNs was reported. To understand the detailed internal structure of these SLNs, ultra‐small angle neutron scattering (USANS) and small angle neutron scattering (SANS) experiments are conducted on suspensions of hydrogenated stearic acid SLNs stabilized with hydrogenated Tween 20 surfactant in D2O. Together, SANS and USANS gives a combined Q range of 0.000047 to 0.6 Å?1 (corresponding to a size range of ≈1 nm–15 µm). This extended Q range allows a comprehensive understanding of the hierarchical structure of SLNs. The data are consistent with the multi‐length scale structure of SLNs having polydispersed large particles with roughened surfaces at the microscale level. At the nanoscale level, the results are consistent with the SLNs having an ellipsoidal shape intermediate between spheres and rods, with a crossover from mass fractals to surface fractals. The elucidation of this structure is particularly important given that the structure influences the stability and drug release properties of the nanoparticles. These results assist in the development of systems with desired shape and properties.  相似文献   

16.
A stable mixture of two colloid system composed of double surfactant coated aqueous nanomagnetic fluid and aqueous micellar solution of cationic micelles of cetyletrymethyl ammonium bromide (CTABr) is prepared as a function of nanomagnetic fluid concentration. This mixed system is analyzed using three techniques such as zero field and field induced viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence measurements. In field induced viscosity measurement it is observed that even 20% magnetic fluid concentration in CTABr aqueous solution shows 75% increase in viscosity compared to pure magnetic fluid. This suggests that in presence of CTABr micelles, a novel magneto rheological effect for low concentration of magnetic fluid is observed. From SANS measurements it is observed that aggregation number and a/b ratio increases with magnetic fluid concentration and magnetic birefringence reveals non-superimpose behavior of normalized field induced retardation. Results of these experiments are compared and indicate zero fields and field induced structural integrity between magnetic particles and soft micelles.  相似文献   

17.
小角X光散射是当X光照射到物质上时发生的在原光束附近小角度范围内的电子相干散射,凡是存在纳米尺度的电子密度不均匀区的物质均会产生小角X光散射现象,因此它是表征纳米、多孔材料结构的理想手段。SAXS中的有关理论一般仅适用于稀疏体系,对于密集体系,往往会产生干涉现象。本文简要总结了目前文献中有关干涉效应的判断与处理方法。  相似文献   

18.
Abstract

Activated carbons (ACs) have a wide range of applications, in which the largely expanded specific surface plays a major role. The question of their structure came back to the limelight with the discovery of nanotubes fullerenes, which suggested that curved surfaces may be present in their structure and which incorporates well into the ideas of ACs porous structure. The source of those curved surfaces is atomic defects present inside the in-plane graphitic honeycomb lattice. Such defects have a crucial influence on the macroscopic morphology as well as physical properties of the material. The activated carbon (AC) in this work was derived from carbonised saccharose by activation with NaOH. Both materials – before and after activation were investigated. The main methods used in this study are wide angle neutron scattering and wide angle X-ray scattering combined with computer simulations. Confirmation of the proposed structures was sought with high-resolution transmission electron microscopy and Raman scattering. In this case, the use of classical crystallography to interpret experimental data was impossible due to the lack of periodic three-dimensional symmetry. Due to this fact, the data was analysed both in real and reciprocal space in the form of a pair correlation function and a structure factor. The experimental data were compared with calculated atomistic models. As a validation, the discrepancy factor between the theoretically and experimentally obtained functions was used. The presented innovative approach can be applied to different carbon materials with varying degrees of disorder.  相似文献   

19.
Liquid water, the most familiar liquid, is still not completely understood, even less so all the processes in which it participates. The directionality of the bonds and quantum aspects make the establishment of a complete theory difficult, particularly in the case of effective potentials built with spherical electrostatic forces. Recent work has focused on the hydrogen bonds formed between water molecules or with hydrophilic substrates. We describe the present situation of research concerning the so-called anomalies of liquid water at low temperature. Although without direct applications, this problem is consistently an object of discussion, enhanced by results from molecular dynamics simulations. Conversely, because in many situations where water plays a major role, such as, for example, in biology, only a few molecules are involved, the study of confined water is extremely important, sometimes decoupled from the more fundamental studies of bulk water. A short, but far from exclusive, summary of some of the more active domains of research concerning liquid water is given, mainly concerning interactions with other media.  相似文献   

20.
GISAXS and SAXS studies on the spatial structures of Co nanowire arrays   总被引:2,自引:0,他引:2  
The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a ≈ 105 nm, b ≈ 95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 μm. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号