首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolution of large particles in DC-cast 7xxx aluminum alloys is one of the primary objectives of the homogenization process. A mathematical model to describe and predict this complex thermodynamical and kinetical process is of great significance. In this paper, the details of a diffusion-limited dissolution model, based on the thinning, discontinuation and full dissolution (TDFD) mechanism, to predict the dissolution of the Al17(Fe3.2, Mn0.8)Si2 particles is described. The model is capable of predicting the volume fraction and thickness of the particles during homogenization at different temperatures and time intervals. The predicted results are in good agreement with measurements using quantitative X-ray diffraction (QXRD) and quantitative field emission gun-scanning electron microscopy (QSEM). The model predictions of the supersaturation parameter, interface position, interface movement rate of the planar surfaces and the cylindrical edges, and the effect of the occurrence of discontinuities on the dissolution extent are presented.  相似文献   

2.
3.
Al–Cu–Ag alloy was prepared in a graphite crucible under a vacuum atmosphere. The samples were directionally solidified upwards under an argon atmosphere with different temperature gradients (G=3.99–8.79 K/mm), at a constant growth rate (V=8.30 μm/s), and with different growth rates (V=1.83–498.25 μm/s), at a constant gradient (G=8.79 K/mm) by using the Bridgman type directional solidification apparatus. The microstructure of Al-12.80-at.%–Cu-18.10-at.%–Ag alloy seems to be two fibrous and one lamellar structure. The interlamellar spacings (λ) were measured from transverse sections of the samples. The dependence of interlamellar spacings (λ) on the temperature gradient (G) and the growth rate (V) were determined by using linear regression analysis. According to these results it has been found that the value of λ decreases with the increase of values of G and V. The values of λ 2 V were also determined by using the measured values of λ and V. The experimental results were compared with two-phase growth from binary and ternary eutectic liquid.  相似文献   

4.
The surface properties of Al–Ga and Al–Ge liquid alloys have been theoretically investigated at a temperature of 1100 K and 1220 K respectively. For the Al–Ga system, the quasi chemical model for regular alloy and a model for phase segregating alloy systems were applied, while for the Al–Ge system the quasi chemical model for regular and compound forming binary alloys were applied. In the case of Al–Ga, the models for the regular alloys and that for the phase segregating alloys produced the same value of order energy and same values of thermodynamic and surface properties, while for the Al–Ge system, the model for the regular alloy reproduced better the thermodynamic properties of the alloy. The model for the compound forming systems showed a qualitative trend with the measured values of the thermodynamic properties of the Al–Ge alloy and suggests the presence of a weak complex of the form Al2Ge3. The surface concentrations for the alloys show that Ga manifests some level of surface segregation in Al–Ga liquid alloy while the surface concentration of Ge in Al–Ge liquid alloy showed a near Roultian behavior below 0.8 atomic fraction of Ge.  相似文献   

5.
The superconducting property of Zr55Co(30?x)Al15Nbx (x = 0–20 at.%) metallic glasses fabricated by rapid solidification was investigated. The Zr55Co(30–x)Al15Nbx (x = 5–20 at.%) metallic glasses with a mixture structure of amorphous and nanocrystal phases exhibited superconductivity of Tc,on = 1.8–2.6 K. The maximum Tc,on = 2.6 K was obtained for the Zr55Co10Al15Nb20 metallic glass. This was attributable to the superconducting property of nanocrystalline particles contained in the Zr55Co10Al15Nb20 alloy. The increase of Nb element in the Zr55Co(30–x)Al15Nbx alloy led to the increase of Tc,on and the decrease of glass transition temperature. The glass transition temperature was between 704 and 749 K for the Zr55Co(30–x)Al15Nbx (x = 0–20 at.%) alloys. The temperature interval of supercooled liquid state was between 51 and 68 K for the Zr55Co(30–x)Al15Nbx (x = 0–20 at.%) alloys.  相似文献   

6.
7.
Abstract

A stable decagonal quasicrystal in Al70Pd30?xMnx alloys (x = 10–20) was examined by electron diffraction and high-resolution electron microscopy. The decagonal quasicrystalline grains are formed with definite crystallographic relationships to adjacent icosahedral and Al3Mn crystalline grains. The structure of the decagonal phase, which is formed as the main phase at near Al70Pd10Mn20 composition, is a mixture of decagonal quasicrystalline regions with some linear phason strain and microcrystalline regions. The structures of both regions may be interpreted in terms of quasiperiodic and periodic tilings, constructed with two types of bond lengths, S (about 2 nm) and L (= τ · S, where τ is the Golden ratio), of the same atom cluster with decagonal symmetry.  相似文献   

8.
The lattice dynamics of quasicrystals includes local phason jumps as well as phonons. Phason dynamics is important for the understanding of both the structure and atomic motion in quasicrystals, leading to short-ranged atomic motion not involving vacancies in addition to diffusion. We have studied the phason and phonon dynamics of icosahedral i-Al62Cu25.5Fe12.5. Quasielastic Mössbauer spectroscopy (QMS) was used to probe the iron phason dynamics. Inelastic nuclear-resonant absorption (INA) of synchrotron radiation and inelastic neutron scattering (INS) were used to study the iron-partial as well as the total vibrational DOS (VDOS). We find from preliminary QMS studies that iron atoms jump on a time scale about two orders of magnitude slower than that found for copper. The EFG shows an abrupt change in slope at ca. 825 K which may be related to a transition from simple (isolated) to more complicated (co-operative) phason jumps. From INA we find that the iron-partial VDOS differs radically from that of the total (neutron-weighted) generalised VDOS measured by INS. Both these properties are related to the specific local environments of Fe and Cu in i-AlCuFe.  相似文献   

9.
The premartensitic tweed in Au–Cu–Al alloys, contrary to previous thought that resort to defects, is confirmed to be associated with the coherent embryos of an intermediate phase (I phase) embedded in parent phase. The parent?→?I phase transformation temperature was measured by differential scanning calorimeter and dynamic mechanical analysers, which shifts from 82.3 to 557.6?°C depending on the alloy composition. X-ray diffraction and transmission electron microscopes (TEM) results show that the parent?→?I phase transformation is a charge density wave transition that cannot be suppressed even by melt-spun method, which shows obvious compositional inhomogeneity between I phase and parent. The results imply that the parent?→?I phase transition is a fast displacive transformation coupled with diffusion. Moreover, accompanying the parent?→?I phase transformation, alloys demonstrate diversified microstructure revealed by TEM observation, from tweed to chessboard nanowires or twins. These findings provide the experimental evidence for that parent?→?I phase transformation in Au–Cu–Al alloys is originated from pseudospinodal decomposition as theoretically predicted.  相似文献   

10.
The purpose of this paper is to investigate the isothermal behavior of Fe–27.3Mn–7.6Al–C–6.5Cr–0.25Si–0.88Mo (Mo(0)) and Fe–27.3Mn–7.6Al–1.0C–6.5Cr–0.25Si (Mo(1)) alloys and compare it against Fe–9Cr–1Mo (FCR) commercial alloy. The experiments were carried out at 600°C, 700°C, 750°C and 850°C, each one during 72 h in static air. The oxidation kinetics was measured as a function of time using a Thermogravimetry analyzer (TGA). The structure and composition of the oxide scale were characterized by X-ray diffraction (XRD) and Integral Conversion Electron Mössbauer Spectroscopy (CEMS). The TGA results show that at all oxidation temperatures the sample FCR exhibit the lowest kinetic corrosion and the lowest weight gain, whereas Mo(0) the highest. By CEMS technique it were found a broad magnetic sextet, which has been fit by one hyperfine field distribution with mean hyperfine field characteristic to ferritic/martensite phase, one Fe3?+? doublet and one singlet for the Mo(0) and Mo(1) alloys. Samples oxidized at highest temperatures exhibit a strong paramagnetic line, probably due that the Cr or Mn oxides may be enriched on the surface. Then, the magnetic phase can be converted partially into austenite phase at highest temperatures.  相似文献   

11.
Variations of Vickers hardness were observed in Al–Mg–Mn alloy and Al–Mg–Mn–Sc–Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al–Mg–Mn–Sc–Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1−xZrx and also block-shaped Al3Sc precipitates growing along <1 0 0>Al with facets {1 0 0} and {1 1 0} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc.  相似文献   

12.
Niko Rozman  Jožef Medved 《哲学杂志》2013,93(33):4230-4246
This study investigates the effects of alloying elements on the microstructural evolution of Al-rich Al–Mn–Cu–(Be) alloys during solidification, and subsequent heating and annealing. The samples were characterised using scanning electron microscopy, energy dispersive X-ray spectroscopy, synchrotron X-ray diffraction, time-of-flight secondary-ion mass spectroscopy, and differential scanning calorimetry. In the ternary Al94Mn3Cu3 (at%) alloy, the phases formed during slower cooling (≈1?K?s?1) can be predicted by the known Al–Mn–Cu phase diagram. The addition of Be prevented the formation of Al6Mn, decreased the fraction of τ1-Al29Mn6Cu4, and increased the fraction of Al4Mn. During faster cooling (≈1000?K?s?1), Al4Mn predominantly formed in the ternary alloy, whereas, in the quaternary alloys, the icosahedral quasicrystalline phase dominated. Further heating and annealing of the alloys caused an increase in the volume fractions of τ1 in all alloys and Be4Al (Mn,Cu) in quaternary alloys, while fractions of all other intermetallic phases decreased. Solidification with a moderate cooling rate (≈1000?K?s?1) caused considerable strengthening, which was reduced by annealing for up to 25% in the quaternary alloys, while hardness remained almost the same in the ternary alloy.  相似文献   

13.
Yoon-Uk Heo  Hu-Chul Lee 《哲学杂志》2013,93(36):4519-4531
The effects of Al addition on the precipitation and fracture behaviour of Fe–Mn–Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α′-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2?wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe–Mn–Ni–Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.  相似文献   

14.
A di-vacancy low-temperature diffusion is proposed to explain diffusion-controlled processes in Al–Si alloys responsible for neutron-induced silicon precipitation. Ab initio calculations of potential barriers for Si atom hopping in aluminium lattice showed that in the case of di-vacancy diffusion, they are small compared with that of mono-vacancy diffusion. The low temperature diffusivity of mono-vacancies is too small to account for the measured Si diffusivities in aluminium. The dependencies of radiation-stimulated diffusion on the neutron flux and on the temperature are obtained and can be used for the experimental verification of the developed model.  相似文献   

15.
16.
Nd60Fe30Al10 ribbons has been prepared by chill-block melt-spinning with different wheel speeds from 5 to 30 m/s. Fully amorphous ribbons were obtained at wheel speeds of 25 and 30 m/s. These ribbons exhibited an unusually large anisotropy in magnetization. The effect of the magnetic anisotropy decreased with decreasing wheel speed, and nearly disappeared at the wheel speed of 5 m/s, at which the ribbon consisted of a mixture of a more stable Fe-rich amorphous phase and a crystalline Nd phase with a strong crystallographic texture.  相似文献   

17.
Dissolution patterns essential for Al–Co–Cu and Al–Co–Ni decagonal quasicrystals (d-QCs) have been investigated in detail by chemical etching using a HF–HNO3–H2O solution followed by scanning electron microscopy (SEM) observations. The chemical etching of definite surface areas of the samples, which are either normal or parallel to the tenfold axes, using a solution with HF–HNO3–H2O (1?:?5?:?4 in volume ratio; 0°C; 5–10?min), produces a large number of microfacet pits of decagonal prismatic shape. In addition, the same etching test in combination with SEM observations was carried out on a deformed sample of the Al–Co–Ni d-QC, which had been subjected to concentrated mechanical stress at an elevated temperature of 850°C by means of the Vickers indentation technique. The morphological features of the resulting micropits and their possible origins are discussed on the basis of results obtained by SEM observations.  相似文献   

18.
Methyl green (MG) film has been grown for the first time on p–Ge semiconductor using a simple and low-cost drop coating method. The current–voltage (IV) characteristics of Al/p–Ge and Al/MG/p–Ge diodes have been investigated in the temperature range of 20–300 K. A potential barrier height as high as 0.82 eV has been achieved for Al/MG/p–Ge diode, which has high rectification rate, at room temperature. It is seen that the barrier height of the Al/MG/p–Ge diode at the room temperature is larger than that of Al/p–Ge diode and ideality factor value of 1.14 calculated for Al/MG/p–Ge diode is lower than Al/p–Ge diode. The temperature coefficient of barrier height of the Al/MG/p–Ge diode has been calculated as 2.6 meV/K. The evaluation of current–voltage characteristics shows that the barrier height of the diode increases with the increasing temperature.  相似文献   

19.
In this paper, heat treatment was carried out on Al/Al–Mg–Si alloy clad wire, and microstructure evolution and properties of Al/Al–Mg–Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al–0.5Mg–0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.  相似文献   

20.
Precipitation in a Mg-rich Al–Mg–Si–Ge–Cu alloy was investigated using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The precipitates were needle or lath shaped with the longest dimension parallel to ?001?Al. The precipitates had no repeating unit cell when viewed along this direction. However, the precipitate structure in projection consisted of a hexagonal network of mixed Si and Ge columns, with Mg, Al, and Cu columns occupying specific sites in between the network columns. The Cu columns appeared with the same local arrangement of atomic columns as in Al–Mg–Si–Cu precipitates, and the Cu-free regions consisted of structural units with Mg and Al at specific sites. These structural units were often arranged in a locally ordered fashion, and in some cases the projected structure possessed and overall point symmetry. The amount of strain on the surrounding matrix was found to vary depending on the width of the precipitate cross section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号