首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of electrons within a quantum cascade photodetector structure takes place with the help of the scattering of electrons by phonons. By calculating scattering rates of the electrons mediated by longitudinal optical phonons (the dominant scattering mechanism), current–voltage characteristic of a quantum cascade photodetector is calculated. The results indicate that with the increase of bias voltage dark current increases rapidly, then the increase becomes slow at higher voltages, whilst photocurrent remains approximately constant with only slight variations in its magnitude. With the increase of temperature from 80 K to 160 K dark current increases by about two orders of magnitude while photocurrent varies slightly, so that at the illuminating power of 1 mW/m2 photocurrent density increases in mean from 1.10×10−9 A/cm2 at 80 K to 1.14×10−9 A/cm2 at 160 K and then decreases to 1.03×10−9 A/cm2 at 240 K. Thus the responsivity of the detector varies only slightly with temperature. However owing to the decrease in the resistivity of the photodetector with the increase of temperature, Johnson noise limited detectivity decreases considerably.  相似文献   

2.
We report electrical and optical characteristics of a Si-doped (Al)GaInAs digital alloy/AlInAs Bragg mirror lattice matched to InP grown by molecular beam epitaxy. A 98.2% reflectivity with a 107 nm stop band width centred at 1.54 μ m is obtained. An average voltage drop of 16 mV per period at a current density of 1 KA cm  2is observed for a mean electron concentration of about 5.5  ×  1018cm  3. The influence of structural and intrinsic properties of the heterostructure on the electrical resistivity and optical reflectivity is analysed.  相似文献   

3.
This study proposes an ultrasound-horn system for the extraction of a natural active compound “artemisinin” from Artemisia annua L. leaves as an alternative to hot maceration technique. Ultrasound leaching improves artemisinin recovery at all temperatures where only ten minutes is required to recover 70% (4.42 mg g−1) compared to 60 min of conventional hot leaching for the same yield. For instance, ultrasound treatment at 30 °C produced a higher yield than the one obtained by conventional maceration at 40 °C. Kinetic study suggests that the extraction pattern can be assimilated, during the first ten minutes, to a first order steady state, from which activation energy calculations revealed that each gram of artemisinin required 7.38 kJ in ultrasound versus 10.3 kJ in the conventional system. Modeling results indicate the presence of two extraction stages, a faster stage with a diffusion coefficient of 19 × 10−5 cm2 min−1 for ultrasound technique at 40 °C, seven times higher than the conventional one; and a second deceleration stage similar for both techniques with diffusion coefficient ranging from 1.7 to 3.1 × 10−5 cm2 min−1. It is noted that the efficient ultrasound extraction potential implies extraction of higher amount of co-metabolites so low artemisinin crystal purity is engendered but a combination with a purification step using activated charcoal and celite adsorbents produced crystals with comparable purity for conventional and ultrasound samples.  相似文献   

4.
Tungsten oxide (WO3) thin films were prepared by an electron beam deposition technique. Films were deposited onto fluorine-doped tin oxide (FTO)-coated glass substrates maintained at 523 K. The as-deposited films were found to be amorphous and crystallized after annealing at 673 K. The electrochromic and optical properties, structure, and morphology are strongly dependent on the annealing conditions. Cyclic voltammetry (C-V) was carried out in the potential range −1 to +1 V. Before and after colouration, the films were characterized by measuring transmittance and reflectance. The colouration efficiencies at 630 nm are about 39.4 cm2 C−1 and 122.2 cm2 C−1 for amorphous and crystalline films, respectively. An investigation of self-bleaching for the coloured film revealed that the film fades gradually over time.  相似文献   

5.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

6.
《Current Applied Physics》2010,10(6):1422-1426
Mesoporous Co3O4 microspheres with unique crater-like morphology were obtained by utilizing the mesoporous silica material MCM-41 as a template. The analysis results of N2 adsorption–desorption measurement indicate that the product has a large Brunauer–Emmett–Teller (BET) surface area of 60 m2 g−1 and a narrow pore size distribution centering around 3.7 nm. Its electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The findings reveal that this novel morphology material has a smaller inner resistance of about 0.4 Ω and a higher onset frequency of 550 Hz. This material can provide a high specific capacitance of 102 F g−1 and a large capacity retention of 74% in 500 continuous cycles test at a sweep rate of 3 mV s−1. More significantly, the mass loading of electroactive species can reach as large as 2 mg cm−2, which is one order of magnitude larger than common amount used.  相似文献   

7.
《Current Applied Physics》2010,10(4):1076-1086
In this paper the effect of indium dopants on structure, optical, electrical and mechanical properties of ZnO nanorods are studied. The average surface potentials and the surface currents of ZnO:In nanorods were 0.25–0.84 mV and 2.2–200 MΩ-cm, respectively. The turn-on threshold field for the vertical ZnO nanorods was around 2–16 V μm−1. Emission current densities of 3.3–911.4 mA cm−2 were obtained for an electrical field of 60–160 V μm−1. The photoluminescence (PL) spectrum measured at 15–300 K showed that the intensity of the peak at 2.06 eV increased with decreasing temperature, while the peak at 2.06 eV further red shifted and the peak at 3.39 eV blue shifted.  相似文献   

8.
《Current Applied Physics》2010,10(4):1071-1075
The physical and electrochemical properties of the activated carbon pellet electrodes have been investigated. Activated carbon pellets were prepared from single step carbonization process of pre-carbonized rubber wood sawdust at a temperature of 800 °C that followed with a CO2 activation process at temperature in the range of 700–1000 °C. The BET characterization on the sample found that the surface area of the carbon pellet increased with the increasing of the activation temperature. The optimum value was as high as 683.63 m2 g−1. The electrical conductivity was also found to increase linearly with the increasing of the activation temperature, namely from 0.0075 S cm−1 to 0.0687 S cm−1 for the activation temperature in the range of 700–1000 °C. The cyclic voltammetry characterization of the samples in aqueous solution of 1 M H2SO4 also found that the specific capacitance increased with the increasing of the activation temperature. Typical optimum value was shown by the sample activated at 900 °C with the specific capacitance was as high as 33.74 F g−1 (scan rate 1 mV s−1). The retained ratio was as high as 32.72%. The activated carbon pellet prepared from the rubber wood sawdust may found used in supercapacitor applications.  相似文献   

9.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

10.
Ge blocked-impurity-band (BIB) photoconductors have the potential to replace stressed Ge:Ga photoconductors for far-infrared astronomical observations. A novel planar BIB device has been fabricated in which ion-implanted boron is used to form the blocking contact and absorbing layers of necessary purity and compensation. The effect of doping in the infrared active layer on the far-infrared photoconductive response has been studied, and the optimum doping concentration is found to be ∼4 × 1016 cm−3. Devices doped near this concentration show good blocking characteristics with low dark currents. The spectral response extends to ∼45 cm−1, clearly showing the formation of an impurity band. Under low background testing conditions these devices attain a responsivity of 0.12 A/W and NEP of 5.23 × 10−15 W/Hz1/2.  相似文献   

11.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

12.
The dependence of structural and electrical properties of SnO2 films, prepared using spray pyrolysis technique, on the concentration of fluorine is reported. X-ray diffraction, FTIR and scanning electron microscope (SEM) studies have been performed on SnO2:F (FTO) films coated on glass substrates. Measured values of Hall coefficient and resistivity are reported. The 7.5 m% of F doped film had a resistivity of 15 × 10−4 Ω cm, carrier density of 18.7 × 1019 cm−3 and mobility of 21.86 cm2 V−1 S−1. The NiO film was coated on an FTO substrate and its electrochromic (EC) behavior was studied and the results are reported and discussed in this paper.  相似文献   

13.
The solution combustion synthesis was used to prepare nanopowders of yttrium aluminum garnet (YAG) and YAG doped with dysprosium ions, Dy3+, (YAG:Dy). The morphology, specific surface area, texture, and optical properties of the prepared materials were studied by the means of scanning electron microscopy (SEM), nitrogen adsorption method, and far-infrared spectroscopy at room temperature in the spectral region between 80 and 600 cm−1. It was established that all the examined samples were microporous. The Maxwell–Garnet formula was used to model dielectric function of YAG and YAG:Dy nanopowders as mixtures of homogenous spherical inclusions in air.  相似文献   

14.
We present a cascaded continuous-wave singly resonant optical parametric oscillator (SRO) delivering idler output in mid-IR and terahertz frequency range. The SRO was pumped by an ytterbium-doped fiber laser with 27 W linear polarization pump powers, and based on periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity. The PPMgLN is 50 mm long with 29.5 μm period. The idler power output at 3811 nm was obtained 2.6 W. The additional spectral components that have been attributed to cascaded optical parametric processes are described at increasing pump levels. Besides the initial signal component at about 1476.8 nm, further generated wavelengths with frequency shifts about 47 cm?1, 94 cm?1 and 104 cm?1 were observed. It was speculated that the idler waves lie in the terahertz (THz) domain from the observed results.  相似文献   

15.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

16.
《Solid State Ionics》2009,180(40):1694-1701
Fe-silicalite/Nafion composite membranes with high relative selectivity (as defined by the proton conductivity to methanol permeability ratio) of 5.4 and proton conductivity of 11 mS cm 1 were prepared by in situ hydrothermal synthesis of the zeolite within the pores of Nafion membranes. The effects of the zeolite structure and precursor structure were evaluated in terms of transport properties and acidity levels for a series of Nafion membranes modified with silica and tetrapropylammonium (TPA) and tetrabutylammonium (TBA) cations. Introduction of up to 40% (w/w) of silica vs. pure Nafion shows little effect on the transport and acidity properties of the composite membranes. Introduction of tetraalkylammonium (TAA) cations reduces water uptake of the membranes, and results in the appearance of protons that are inaccessible for titration in water media. The selectivity of the composite membranes increases in the order: SiO2/Nafion < TAA/Nafion < Fe-silicalite/Nafion.  相似文献   

17.
Undoped GaSb is p-type with the residual acceptor concentration of about 1e17 cm−3 due to the gallium vacancies and gallium in antimony site. Counter-doping of GaSb with low level of Te can reduce the net carrier concentration resulting in higher optical transparency in a broad IR spectral range. In this work, the carrier concentration, mobility and sheet resistance of n-type and p-type Te-doped GaSb substrates were measured using Hall method at 300 K and 77 K. The Hall carrier concentration data at 300 K were correlated with the absorption coefficients of GaSb in the IR spectral range. An empirical relationship between these values was established. Based on this correlation, we discuss application of FTIR spectroscopy for non-destructive optical screening of the substrates that allows construction of the carrier concentration distribution map across GaSb wafers. Investigations of the electronic properties of the low-doped p-type and n-type GaSb substrates upon cooling down to 77 K indicate the reduction of the hole carrier concentration background for both GaSb types. This is evident from the decrease in the Hall-measured carrier concentration for p-type GaSb. For n-type GaSb, an increase in the carrier concentration is observed due to the reduction of the hole carrier concentration background.  相似文献   

18.
《Current Applied Physics》2015,15(11):1478-1481
The internal field of GaN/AlGaN/GaN heterostructure on Si-substrate was investigated by varying the thickness of an undoped-GaN capping layer using electroreflectance spectroscopy. The four samples investigated are AlGaN/GaN heterostructure without a GaN cap layer (reference sample) and three other samples with GaN/AlGaN/GaN heterostructures in which the different thickness of GaN cap layer (2.7 nm, 7.5 nm, and 12.4 nm) has been considered. The sheet carrier density (ns) of a two-dimensional electron gas has decreased significantly from 4.66 × 1012 cm−2 to 2.15 × 1012 cm−2 upon deposition of a GaN capping layer (12.4 nm) over the reference structure. Through the analysis of internal fields in each GaN capping and AlGaN barrier layers, it has been concluded that the undiminished surface donor states (ns) of a reference structure and the reduced ns caused by the Au gate metal are approximately 5.66 × 1012 cm−2 and 1.08 × 1012 cm−2, respectively.  相似文献   

19.
《Solid State Ionics》2006,177(26-32):2705-2709
Lithium ions of perovskite-type lithium ion conductor La0.55Li0.35TiO3 were replaced by divalent Mg2+, Zn2+, and Mn2+ ions in an ion-exchange reaction using molten chlorides. The polycrystalline Mg-exchanged and Zn-exchanged samples are solid electrolytes for divalent Mg2+ and Zn2+ ions, whose dc ionic conductivities (σ = 2.0 × 10 6 S cm 1 at 558 K for the Mg-exchanged sample, La0.56(2)Li0.02(1)Mg0.16(1)TiO3.01(2) and σ = 1.7 × 10 6 S cm 1 at 708 K for the Zn-exchanged samples, La0.55(1)Li0.0037(2)Zn0.15(1)TiO2.98(2)) were compared to those of the known highest Mg2+ and Zn2+ inorganic solid electrolytes. The Mn-exchanged sample, then, showed paramagnetic behavior in the temperature range of 2 to 300 K. The Mn ions in the exchanged sample are divalent and the spin configuration is in high spin state (S = 5/2).  相似文献   

20.
We report optical and nonlinear optical properties of CuS quantum dots and nanoparticles prepared through a nontoxic, green, one-pot synthesis method. The presence of surface states and defects in the quantum dots are evident from the luminescent behavior and enhanced nonlinear optical properties measured using the open aperture Z-scan, employing 5 ns laser pulses at 532 nm. The quantum dots exhibit large effective third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 2.3 J cm−2, and the optical nonlinearity arises largely from absorption saturation and excited state absorption. Results suggest that these materials are potential candidates for designing efficient optical limiters with applications in laser safety devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号