首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enantioselective 1,2‐reduction of α,β‐unsaturated ketones was achieved using a NiH catalyst in the presence of pinacolborane. This mild process represents a general method to access a wide variety of structurally diverse α‐chiral allylic alcohols in excellent yields and enantioselectivity, as well as very high levels of ambidoselectivity for 1,2‐ over 1,4‐reduction. Furthermore, for reactions on a 10 mmol scale, catalyst loadings as low as 0.5 mol % could be employed to deliver product without any detrimental effect on the yield, enantio‐, or ambidoselectivity.  相似文献   

2.
3.
4.
We present an atom‐economic strategy to catalytically generate and intercept nitrile anion equivalents using hydrogen transfer catalysis. Addition of α,β‐unsaturated nitriles to a pincer‐based Ru?H complex affords structurally characterized κ‐N‐coordinated keteniminates by selective 1,4‐hydride transfer. When generated in situ under catalytic hydrogenation conditions, electrophilic addition to the keteniminate was achieved using anhydrides to provide α‐cyanoacetates in high yields. This work represents a new application of hydrogen transfer catalysis using α,β‐unsaturated nitriles for reductive C?C coupling reactions.  相似文献   

5.
A new general concept for α,β‐unsaturated acyl ammonium catalysis is reported that uses p‐nitrophenoxide release from an α,β‐unsaturated p‐nitrophenyl ester substrate to facilitate catalyst turnover. This method was used for the enantioselective isothiourea‐catalyzed Michael addition of nitroalkanes to α,β‐unsaturated p‐nitrophenyl esters in generally good yield and with excellent enantioselectivity (27 examples, up to 79 % yield, 99:1 er). Mechanistic studies identified rapid and reversible catalyst acylation by the α,β‐unsaturated p‐nitrophenyl ester, and a recently reported variable‐time normalization kinetic analysis method was used to delineate the complex reaction kinetics.  相似文献   

6.
7.
The hydroformylation of alkynes is a fundamental and important reaction in both academic research and industry. Conventional methods focus on the conversion of alkynes, CO, and H2 into α,β‐unsaturated aldehydes, but they often suffer from problems associated with operation, regioselectivity, and chemoselectivity. Herein, we disclose an operationally simple, mild, and syngas‐free rhodium‐catalyzed reaction for the hydroformylation of alkynes via formyl and hydride transfer from an alkyl aldehyde. This synthetic method uses inexpensive and easy‐to‐handle n‐butyraldehyde to overcome the challenge posed by the use of syngas in traditional approaches and employs a commercially available catalyst and ligand to transform a broad range of internal alkynes, especially alkynyl‐containing complex molecules, into versatile stereodefined α,β‐unsaturated aldehydes with excellent chemo‐, regio‐, and stereoselectivity.  相似文献   

8.
9.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

10.
11.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

12.
Treatment of the polymer‐supported α‐phenylseleno ketones and esters prepared from polymer‐supported selenium bromide with ketone and ester enolates with hydrogen peroxide afford α,β‐unsaturated ketones and esters in good yields and high purities.  相似文献   

13.
14.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

15.
16.
17.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

18.
We report Ir‐catalyzed, enantioselective allylic substitution reactions of unstabilized silyl enolates derived from α,β‐unsaturated ketones. Asymmetric allylic substitution of a variety of allylic carbonates with silyl enolates gave allylated products in 62–94 % yield with 90–98 % ee and >20:1 branched‐to‐linear selectivity. The synthetic utility of this method was illustrated by the short synthesis of an anticancer agent, TEI‐9826.  相似文献   

19.
A simple and high‐yield method for the synthesis of several 1,5‐diaryl‐1,5‐dicarbonyl compounds has been established starting from TBAF‐mediated isomerization and dimerization reaction of β,γ‐unsaturated arylketones (allyl arylketones) with mono‐, di‐, and tri‐methoxy groups, which is derived from allylation of commercially available different benzaldehydes and followed by oxidation of the resulting secondary alcohols.  相似文献   

20.
An unprecedented highly regio‐ and enantioselective rhodium‐catalyzed addition of 1,3‐diketones to terminal and 1,1‐disubstituted allenes furnishing asymmetric tertiary and quaternary all‐carbon centers is reported. By applying a RhI/phosphoramidite/TFA catalytic system under mild conditions, the desired chiral branched α‐allylated 1,3‐diketones could be obtained in good to excellent yields, with perfect regioselectivity and in high enantioselectivity. The reaction shows a broad functional‐group tolerance on both reaction partners highlighting its synthetic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号