首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
A novel fluorescent nanoparticle with reversible on‐off switching properties has been synthesized. Three different wavelengths of light are used for switching‐on light, switching‐off light and excitation light, respectively. Thus, when this particle is used as a fluorescent probe by irradiation of the excitation light, the on‐off status can be maintained. We also showed that the on‐off status of the fluorescent particle even embedded in hydrogels can be remotely controlled by using two different wavelengths of light. These results promise that this kind of fluorescent particles will introduce a new concept and it will possibly be applied as a novel fluorescent probe, a photo memory, and a switching devise for photonics.

  相似文献   


8.
9.
Fluorescent nanoparticles (FNPs) are obtained in water by self‐assembly from a polymeric ionic liquid, fluorescent carboxylate moiety, and a surfactant through two main supramolecular interactions, that is, ionic bonds and hydrophobic/hydrophilic interactions. The hydrophobicity of the surfactant is tunable and a highly hydrophobic surfactant increases the fluorescence intensity and stability of the FNPs. The fluorescence of the FNPs is sensitive to a quenching effect by various ions with high selectivity, and consequently, they may be used as sensors. The self‐assembly approach used to generate the FNPs is considerably simpler than other methods based on more challenging synthetic methods and the flexibility of the approach should allow a wide and diverse range of FNPs to be prepared with specific sensor applications.  相似文献   

10.
The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH? ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.  相似文献   

11.
12.
Organization of gold nanoobjects by oligonucleotides has resulted in many three‐dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self‐regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four‐dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy‐dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well‐defined core–satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs.  相似文献   

13.
14.
A porous crystal family has been explored as alternatives of Nafion films exhibiting super‐proton conductivities of ≥10−2 S cm−1. Here, the proton‐conduction natures of a solution‐processed film of nanoparticles (NPs) have been studied and compared to those of a Nafion film. A mono‐particle film of Prussian‐blue NPs is spontaneously formed on a self‐assembled monolayer substrate by a one‐step solution process. A low‐temperature heating process of the densely packed, pinhole‐free mono‐particle NP film enables a maximum 105‐fold enhancement of proton conductivity, reaching ca. 10−1 S cm−1. The apparent highest conductivity, compared to previously reported data of the porous crystal family, remains constant against humidity changes by an improved water‐retention ability of the film. In our proposed mechanism, the high‐performing solution‐processed NP film suggests that heating leads to the self‐restoration of hydrogen‐bonding networks throughout their innumerable grain boundaries.  相似文献   

15.
Covalent organic frameworks (COFs) have attracted attention due to their ordered pores leading to important industrial applications like storage and separation. Combined with their modular synthesis and pore engineering, COFs could become ideal candidates for nanoseparations. However, the fabrication of these microcrystalline powders as continuous, crack‐free, robust films remains a challenge. Herein, we report a simple, slow annealing strategy to construct centimeter‐scale COF films ( Tp‐Azo and Tp‐TTA ) with micrometer thickness. The as‐synthesized films are porous (SABET=2033 m2 g?1 for Tp‐Azo ) and chemically stable. These COFs have distinct size cut‐offs (ca. 2.7 and ca. 1.6 nm for Tp‐Azo and Tp‐TTA , respectively), which allow the size‐selective separation of gold nanoparticles. Unlike, other conventional membranes, the durable structure of the COF films allow for excellent recyclability (up to 4 consecutive cycles) and easy recovery of the gold nanoparticles from the solution.  相似文献   

16.
The self‐assembly of a binary blend of nanoparticles in a homopolymer matrix using molecular dynamics (MD) simulations is studied here. The systems consist of polymer matrix, “bare” ungrafted spherical nanoparticles and polymer‐grafted nanoparticles, where the particle cores are identical and grafted chains are similar to matrix polymer. It is observed that addition of grafted nanoparticles to a blend of polymer and bare particles can result in the formation of anisotropic structures. By carefully selecting the graft density and molecular weight of the grafted chains, the clusters go from spherical to cylindrical to branched cylinders. This study suggests that it is indeed possible to control the morphology of bare nanoparticles in polymer without directly modifying their surface properties. It is believed that this phenomenon might be of high importance, especially in cases such as polymer‐based solar cells, where it is not feasible to graft the nanoparticles with polymer chains to achieve a greater level of control over the morphology.

  相似文献   


17.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

18.
It makes sense : Conjugated polymer nanoparticles doped with a platinum porphyrin dye exhibit bright phosphorescence that is highly sensitive to the concentration of molecular oxygen. The small size, extraordinary brightness, excellent sensitivity, and ratiometric emission, together with the demonstration of single‐particle sensing and cellular uptake, indicate the potential of the nanoparticle sensors for quantitative mapping of local molecular oxygen concentration.

  相似文献   


19.
Stable nanoparticle vesicles were for the first time prepared from adamantyl‐ and cyclodextrin (CD)‐modified silica nanoparticles forming host–guest interactions in aqueous solution. Adamantyl‐functionalized nanoparticles were obtained from thiol‐isocyanate reaction of thiol‐modified nanoparticles with 1‐adamantyl isocyanate. The CD modified silica particles were isolated from a reaction of mono‐6‐para‐toluenesulfonyl‐β‐cyclodextrin with the thiol functionalized silica under microwave conditions in basic media. The obtained particles were characterized in respect of agglomeration and self‐assembly behavior in aqueous solution by dynamic light scattering and transmission electron microscopy. The found vesicle structures are exceptionally stable even after evaporation of water. Such inorganic hollow spheres formed through self‐assembly processes may be important for chemical storage and transport. The technique of chemically‐driven assembly is an attractive option to form useful complex structures by tunable agglomeration.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号