首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


4.
An efficient method for the one‐pot synthesis of substituted phenanthridinone derivatives from N‐methoxybenzamides and aryltriethoxysilanes through rhodium‐catalyzed dual C? H bond activation and annulation reactions is described. A double‐cycle mechanism is proposed to account for this catalytic reaction. In addition, isotope‐labeling studies were performed to understand the intimate mechanism of the reaction.  相似文献   

5.
6.
Helical tetrasubstituted alkenes ( 7 ) were obtained in a highly efficient way through a palladium‐catalyzed domino‐carbopalladation/CH‐activation reaction of propargylic alcohols 6 in good to excellent yields. Electron‐withdrawing‐ and electron‐donating substituents can be introduced onto the upper and lower aromatic rings. The substrates ( 6 ) for the domino process were synthesized by addition of the lithiated alkyne ( 20 ) to various aldehydes ( 19 ); moreover, the substrates were accessible enantioselectively (in 95 % ee) by reduction of the corresponding ketone using the Noyori procedure.  相似文献   

7.
8.
9.
10.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

11.
12.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

13.
14.
The commonly used para‐nitrobenzenesulfonyl (nosyl) protecting group is employed to direct the C H activation of amines for the first time. An enantioselective ortho‐C H cross‐coupling between nosyl‐protected diarylmethylamines and arylboronic acid pinacol esters has been achieved utilizing chiral mono‐N‐protected amino acid (MPAA) ligands as a promoter.  相似文献   

15.
16.
17.
18.
19.
20.
The synthesis of all eight rare, but biologically important L ‐hexoses as the according thioglycosyl donors was achieved through a procedure involving the C H activation of their corresponding 6‐deoxy‐L ‐hexoses. The key steps of the procedure were the silylation of the OH group at C4 followed by an intramolecular C H activation of the methyl group in γ‐position; both steps were catalyzed by iridium. The following Fleming–Tamao oxidation and acetylation gave the suitably protected L ‐hexoses. This is the first general method for the preparation of all eight L ‐hexoses as their thioglycosyl donors ready for glycosylation and the first example of an iridium‐catalyzed C(sp3) H activation on sulfide‐containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号