首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Sonochemical elimination of organic pollutants can take place through two degradation pathways. Molecules with relatively large Henry’s law constants will be incinerated inside the cavitation bubble, while nonvolatile molecules with low Henry’s law constants will be oxidised by the OH ejected from the bubble of cavitation. Taking bisphenol-A as a model pollutant, this study points out an alternate degradation route, mediated by bicarbonate ions, which is significant for the elimination of micro-pollutants at concentrations present in natural waters. In this process, OH radicals react with bicarbonate ions to produce the carbonate radical, which, unlike the OH radical, can migrate towards the bulk of the solution and therefore induce the degradation of the micro-pollutants present in the bulk solution. As a consequence, initial degradation rate is increased by a factor 3.2 at low concentration of bisphenol-A (0.022 μmol l−1) in presence of bicarbonate in water.  相似文献   

2.
A rapid and efficient treatment method, using periodate (PI) for sonochemical oxidation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) was developed. With an addition of 45 mM PI, 96.5% of PFOA was decomposed with a defluorination efficiency of 95.7% after 120 min of ultrasound (US). The removals of PFOA were augmented with an increase in PI doses. In all the PI + US experimental runs, decomposition efficiencies were essentially similar to those of defluorination, indicating that PFOA was decomposed and mineralized into fluoride ions. Lower solution pHs resulted in an increase in decomposition and defluorination efficiencies of PFOA due to acid-catalyzation. Dissolved oxygen increased the amount of IO4 radicals produced, which consumed the more effective IO3 radicals. Consequently, presence of oxygen inhibited the destruction of PFOA. The PFOA degradation rates with different gases sparging are in the following order: nitrogen > air > oxygen. Effects of anions follow the Hofmeister effects on PFOA degradation (i.e., Br > none  Cl > SO42). Br could react with OH to yield radical anion Br2 that enhances the PFOA degradation. A reaction pathway was also proposed to describe the PI oxidation of PFOA under US irradiation.  相似文献   

3.
4.
This study investigated the effects of sulfate ions on the decomposition of perfluorooctanoic acid (PFOA) by ultrasonic (US) irradiation at various pHs, sulfate doses, powers and temperatures. The removal of PFOA was augmented with an increased sulfate ion concentration, with PFOA being almost completely decomposed in 90 min at 25 °C with a sulfate dose of 117 mM. The two major mechanisms in the sulfate-assisted sonochemical system are the direct destruction of PFOA by cavitation and the indirect destruction of PFOA by sulfate free radicals. The decomposition of PFOA followed pseudo-first-order kinetics and was not influenced by pH. The reaction rate constants decreased with increases in temperature due to decreases in the surface tension of the solution.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(5):1875-1880
Perfluorooctanoic acid (PFOA) is a recalcitrant organic pollutant in wastewater because of its wide range of applications. Technologies for PFOA treatment have recently been developed. In this study, PFOA decomposition by sonochemical treatment was investigated to determine the effects of NaHCO3 concentrations, N2 saturation, and pH on decomposition rates and defluorination efficiencies. The results showed that PFOA decomposition by ultrasound treatment only (150 W, 40 kHz), with or without saturated N2, was <25% after 4 h reaction. The extent and rate of PFOA decomposition and defluorination efficiencies of PFOA, however, greatly increased with the addition of carbonate radical reagents. PFOA was completely decomposed after 4 h of sonochemical treatment with a carbonate radical oxidant and saturated N2. Without saturated N2, PFOA was also decomposed to a high (98.81%) degree. The highest PFOA decomposition and defluorination efficiencies occurred in N2 saturated solution containing an initial NaHCO3 concentration of 30 mM. Sonodecomposition of PFOA with CO3 radical was most favorable in a slightly alkaline environment (pH = 8.65). There isn’t any shorter-chain perfluorinated carboxylic acids detected except fluorine ions in final reaction solution.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(5):1763-1769
This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20–60 W), initial ACP concentration (33–1323 μmol L−1) and pH (3–12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry’s law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L−1), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system.  相似文献   

7.
Sonochemical reactions of alkyl and aryl thiols in water–organic mixed solvent systems were kinetically investigated. The reaction in the liquid–liquid interface apparently depends on the polarities, surface activities, vapor pressures and hydrophobicities of organic solvents and thiols. Interestingly, the rate jump in sonochemical disappearance of alkyl thiols was observed under emulsified conditions.  相似文献   

8.
Propelled by enormous increase in demand for fuel sources, Canadian oil sands are becoming increasingly important as a fuel source due to their abundance and upgrading capability. However, extraction of bitumen, a high acid crude (HAC) oil, requires 2–3 units of water per unit of oil resulting in naphthenic acid (NA)-rich oil sands process affected water (OSPW) collected in effluent ponds. This study illustrates the role of sonochemistry in the accelerated degradation through H-abstraction and subsequent decarboxylation of aromatic and alicyclic naphthenic acid model compounds. Benzoic acid and 3-methylcyclohexane carboxylic acid were selected as model NA compounds to investigate the mechanism of hydroxyl radical (OH) initiated carboxylic acid degradation in 378 KHz sonochemical reactor. Established FTIR methods with low resolution LCMS spectroscopy confirmation were applied to determine the extent of carboxylic acid degradation and identify the formation of products. FTIR monitoring showed a non-linear degradation of carboxylic acids with formation of many intermediates highlighting the shift from cyclic carboxylic acids to cyclic alcohols during BA degradation. Subsequent decrease in carboxylic acid groups signifies scission of cyclic structures before complete mineralization. This is confirmed with the LCMS identification of products such as: 3-hydroxybenzoic acid and phenol. This study postulated new breakdown pathways for degradation of benzoic acid with complete mineralization at a sonochemical reaction time (SRT) of 4 h. A radical quenching process was also inferred through the formation of conglomerates during sonochemical degradation of BA. Extension of the study to 3-methylcyclohexane carboxylic acid (3mCHA) shows similar non-linearity with an increase in carboxylic acid groups indicating H-abstraction followed by ring-opened compounds. However, due to the complex nature of 3mCHA’s ring-opened compounds, complete mineralization is not achieved. The putative role of sonochemistry is a promising and sustainable degradation method for mitigating NAs in OSPW, but sonication periods need to be considered carefully to ensure adequate mineralization of their constituents and combinatorial methods with other advanced oxidation methods may be needed to enhance industrial application.In Part II, an in silico screening approach using first principles is reported to identify the breakdown of the organic compounds and determine molecular rates of reaction to confirm the mechanistic origins of the compounds formed.  相似文献   

9.
Sonochemical degradation of 4-chlorophenol, phenol, catechol and resorcinol was studied under Ar at 200 kHz in the absence and presence of Na2SO4 or NaCl. The rates of sonochemical degradation in the absence of salts decreased in the order 4-chlorophenol > phenol > catechol > resorcinol and this order was in good agreement with the order of log P (partition coefficient) value of each phenolic compound. The effects of salts on the rates of sonochemical degradation consisted of no effect or slight negative or positive effects. We discussed these unclear results based on two viewpoints: one was based on the changes in pseudo hydrophobicity and/or diffusion behavior of phenolic compounds and the other was based on the changes in solubility of Ar gas. The measured log P value of each phenolic compound slightly increased with increasing salt concentration. In addition, the dynamic surface tension for 4-chlorophenol aqueous solution in the absence and presence of Na2SO4 or NaCl suggested that phenolic compounds more easily accumulated at the interface region of bubbles at higher salt concentration. These results indicated that the rates of sonochemical degradation should be enhanced by the addition of salts. On the other hand, the calculated Ar gas solubility was confirmed to decrease with increasing salt concentration. The yield of H2O2 formed in the presence of Na2SO4 or NaCl decreased with increasing salt concentration. These results suggested that sonochemical efficiency decreased with decreasing gas amount in aqueous solution: a negative effect of salts was observed. Because negative and positive effects were induced simultaneously, we concluded that the effects of salts on the rates of sonochemical degradation of phenolic compounds became unclear. The products formed from sonochemical degradation of 4-chlorophenol were also characterized by HPLC analysis. The formation of phenol and 4-chloro-1,3-dihydroxy benzene was confirmed and these concentrations were affected by the presence of salts.  相似文献   

10.
The degradation of azure B dye (C15H16ClN3S; AB) has been studied by Fenton, sonolysis and sono-electroFenton processes employing ultrasound at 23 kHz and the electrogeneration of H2O2 at the reticulated vitreous carbon electrode. It was found that the dye degradation followed apparent first-order kinetics in all the degradation processes tested. The rate constant was affected by both the pH of the solution and initial concentration of Fe2+, with the highest degradation obtained at pH between 2.6 and 3. The first-order rate constant decreased in the following order: sono-electroFenton > Fenton > sonolysis. The rate constant for AB degradation by sono-electroFenton is ∼10-fold that of sonolysis and ∼2-fold the one obtained by Fenton under silent conditions. The chemical oxygen demand was abated ∼68% and ∼85% by Fenton and sono-electroFenton respectively, achieving AB concentration removal over 90% with both processes.  相似文献   

11.
2-picoline is a very important pyridine derivative with significant applications though it is also poisonous and harmful having considerable adverse influence on aquatic life, environment and organisms. The need for developing effective treatment methodologies for 2-Picoline directed the current work focusing on degradation of 2-Picoline using the combination of ultrasound and advanced oxidants such as hydrogen peroxide (H2O2), potassium persulphate (KPS), Fenton’s reagent, and Peroxymonosulphate (PMS) along with the use of Titanium oxide (TiO2) as catalyst. Ultrasonic bath having 8 L capacity and operating frequency of 40 ± 2 kHz has been used. The effect of parameters like power, initial pH, temperature, time and initial concentration of 2-Picoline were studied to establish best operating conditions which were further used in the combination treatment approaches of ultrasound with oxidising agents. The chemical oxygen demand (COD) reduction for the optimized approaches of ultrasound in combination with oxidizing agents was also determined. Degradation experiments were performed using oxidising agents also in absence of ultrasound to investigate the individual treatment capacity of the oxidants and also the synergetic index for the combination. Kinetic study demonstrated that second order model suited for all the treatment approaches except US/Fenton where first order model fitted better. Ultrasound in combination with Fenton reagent demonstrated a substantial synergy for the degradation of 2-Picoline compared to other treatment approaches showing highest degradation of 97.6 %, synergetic index as 5.71, cavitational yield of 1.82 × 10−5 mg/J and COD removal of 82.4 %.  相似文献   

12.
The effects of air sparging (0–16 L min−1) and mechanical mixing (0–400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased → increased exponentially → decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min−1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.  相似文献   

13.
In this research, a sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles is proposed. The proposed synthesis methodology incorporates the use of Piper auritum (an endemic plant) as reducing agent and in a complementary way, an ultrasonication process to promote the synthesis of the plasmonic/magnetic nanoparticles (Au/Fe3O4). The synergic effect of the green and sonochemical synthesis favors the well-dispersion of precursor salts and the subsequent growth of the Au/Fe3O4 nanoparticles.The hybrid green/sonochemical process generates an economical, ecological and simplified alternative to synthesizing Au/Fe3O4 nanoparticles whit enhanced catalytic activity, pronounced magnetic properties. The morphological, chemical and structural characterization was carried out by high- resolution Scanning electron microscopy (HR-SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray diffraction (XRD), respectively. Ultraviolet–visible (UV–vis) and X-ray photoelectron (XPS) spectroscopy confirm the Au/Fe3O4 nanoparticles obtention. The magnetic properties were evaluated by a vibrating sample magnetometer (VSM). Superparamagnetic behavior, of the Au/ Fe3O4 nanoparticles was observed (Ms = 51 emu/g and Hc = 30 Oe at 300 K). Finally, the catalytic activity was evaluated by sonocatalytic degradation of methyl orange (MO). In this stage, it was possible to achieve a removal percentage of 91.2% at 15 min of the sonocatalytic process (160 W/42 kHz). The initial concentration of the MO was 20 mg L−1, and the Fe3O4-Au dosage was 0.075 gL−1. The MO degradation process was described mathematically by four kinetic adsorption models: Pseudo-first order model, Pseudo-second order model, Elovich and intraparticle diffusion model.  相似文献   

14.
For sonochemical processing on an industrial scale the traditional choice is either a batch or flow system. The former is straightforward in concept but it requires large scale powerful ultrasonic transducers capable of delivering high intensity ultrasound to large volumes of liquid. Unfortunately at the moment the cost and problems involved in building very large sonication devices for batch processes cannot justify the replacement of existing industrial processes. For this reason most sonochemists prefer some form of flow system where small quantities of reagents can be treated as they are pumped from a large vat of reagents through a smaller sonochemical reactor where high intensity ultrasound can be applied. In this short paper we draw attention to a problem which seems common in a number of papers dealing with such flow systems – a confusion between the terms continuous reactor and loop reactor. Further we emphasise the importance of calculating the actual amount of ultrasonic processing experienced by the reaction mixture within the sonication zone of a loop reactor during its operation. The parameters required for such a calculation are: ultrasonic processor volume (Rv in L), pump flow rate (Fr in L/min), stock solution volume in the reservoir (Sv in L) and the overall system operating time (So in min).  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

16.
This paper describes the ultrasonic degradation of oxalic acid. The effects of ultrasonic power, H2O2, NaCl, external gases on the degradation of oxalic acid were investigated. Reactor flask containing oxalic acid was immersed in the ultrasonic bath with water as the coupling fluid. Representative samples withdrawn were analysed by volumetric titration. Degradation degree of oxalic acid increased with increasing ultrasonic power. It was observed that H2O2 has negative contribution on the degradation of oxalic acid and there was an optimum concentration of NaCl for enhancing the degradation degree of oxalic acid. Although bubbling nitrogen gave higher degradation than that for bubbling air, both gases (for 20 min before sonication and during sonication together) could not help to enhance the degradation of oxalic acid when compared with the degradation without gas passage.  相似文献   

17.
A sonophotochemical oxidation process has been used for the treatment of an aqueous solution of phenol. The aim of this work is to evaluate the effect of nitrate ions on hydroxyl radical production and on phenol oxidation. It has been demonstrated that ultrasound can produce NOx (nitrate and nitrite), with a production rate of 2.2 μM min−1. The photolysis of nitrate can significantly improve the hydroxyl radical production. The apparent rate constant for hydroxyl radical production increased from 0.0015 min−1 to 0.0073 min−1 while increasing initial nitrate concentration from 0 to 0.5 mM. The concentration of hydroxyl radical was directly proportional to the initial nitrate concentration. Using US/UV process, the apparent reaction rate constant of phenol degradation in the presence of nitrate reached 0.020 min−1, which was relatively lower than the value obtained (0.027 min−1) in the absence of nitrate. It appeared that, nitrate ions can inhibit the sonochemical degradation of organic compounds such as phenol.  相似文献   

18.
This paper presents a comprehensive experimental and numerical investigation of the effects of liquid temperature on the sonochemical degradation of three organic dyes, Rhodamine B (RhB), Acid orange 7 (AO7) and Malachite green (MG), largely used in the textile industry. The experiments have been carried out for an ultrasonic frequency of 300 kHz. The obtained experimental results were discussed using a new approach combining the results of single-bubble event and the number of active bubbles. The single-bubble event was predicted using a model that combines the bubble dynamics with chemical kinetics occurring inside a bubble during the strong collapse. The number of active bubbles was predicted using a method developed in our previous work. The experiments showed that the degradation rate of the three dyes increased significantly with increasing liquid temperature in the range 25–55 °C. It was predicted that the main pathway of pollutants degradation is the attack by OH radicals. The simulations showed that there exists an optimum liquid temperature of about 35 °C for the production of OH inside a bubble whereas the number of active bubbles increased sharply with the rise of the liquid temperature. It was predicted that the overall production rate of OH increased with increasing liquid temperature in the range 25–55 °C. Finally, it was concluded that the effect of liquid temperature on the sonochemical degradation of the three dyes in aqueous phase was controlled by the number of active bubbles in the range 35–55 °C and by both the number of bubbles and the single bubble yield in the range 25–35 °C.  相似文献   

19.
A combination of ultrasonic and low concentration iron (<3 mgL(-1)) of Fenton process (US/Fenton) has been used to treat wastewater containing Acid black 1 (AB1). The results show that the oxidation power of low concentration iron of Fenton could be significantly enhanced by ultrasonic irradiation. The degradation of AB1 in aqueous solution by US/Fenton can receive better results compared with either Fenton oxidation or ultrasonic alone. Many operational parameters, such as ultrasonic power density, the pH value, the Fe(2+) dosage, the H(2)O(2) dosage, AB1 concentration and the temperature, affecting the degradation efficiency were investigated. Also, the effects of various inorganic anions (such as Cl(-), NO(3)(-), CO(3)(2-), etc.) on the oxidation efficiency of US/Fenton were studied. Under the given test conditions, 98.83% degradation efficiency was achieved after 30 min reaction by US/Fenton. The effect of various inorganic anions was in the following decreasing order: SO(3)(2-)>CH(3)COO(-)>Cl(-)>CO(3)(2-)>HCO(3)(-)>SO(4)(2-)>NO(3)(-). The results show that the US/Fenton can be an effective technology for the treatment of organic dyes in wastewater.  相似文献   

20.
The bubble cavitation along a solid wall is investigated with a three-dimensional model based on the indirect boundary element method. Kinetic energy and Kelvin impulse are calculated in order to quantify the strength of cavitation. The influences of acoustic wave amplitude and frequency and liquid properties on the strength of cavitation are investigated. This study was carried out in order to better understand the relation between microscale processes and macroscale parameters in a sonochemical reactor used for impregnation of fabrics with nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号