首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Polyvinyl alcohol (PVA)-protected Ag colloids were prepared by an electrolysis method. The surface-enhanced Raman scattering (SERS) spectra of Methyl Orange (MO), one of the Azo-dye molecules, in Ag colloids were successfully recorded with good concordance comparing to the theoretical results calculated by the Gaussian’98 program. The MO was adsorbed on the surface of Ag nanoparticles by trans-form which plays an important role for the SERS effect. However, the SERS spectra of MO in Ag colloids prepared by chemical reduction method did not appear which may be because of the competition of the borate or citrate ions with the MO. In order to test the applicability of these colloids, the SERS spectra of Sudan red (III) (SR), another of Azo-dye molecules, were measured and the result was good.  相似文献   

2.
Ultrasonic treatment for sludge reduction in wastewater treatment plants (WWTPs) can substantially affect the fate of trace pollutants. However, their fates in the different phases of sludge and mass balances have rarely been reported. In this study, wastewater sludge samples were ultrasonicated at 600 W for 0–30 min. Then, the leaching of the 16 priority polycyclic aromatic hydrocarbons (PAHs) from the sludge solids (sediment) to the liquid phase (supernatant) was investigated. The total concentration of PAHs (∑16 PAHs) in the sludge sediment (2.10 μg/g) was comparable with those of previous worldwide studies. Among the 16 PAHs, naphthalene and acenaphthylene were dominant. The total concentrations of PAHs in the supernatant generally increased with sonication time, indicating that PAHs associated with sludge materials, such as microorganisms, were released into the supernatant. Lighter and more water soluble PAHs were released preferentially into the supernatant in dissolved form, whereas heavier and more hydrophobic PAHs were strongly bound to particles. According to mass balance calculations, 21% of the PAHs in the sludge sediment moved to the supernatant without discernible sonodegradation. An additional experiment for degradation of PAHs supported this interpretation, and several reasons for the no significant sonodegradation were discussed. This result suggests that leaching trace pollutants may significantly contaminate the sludge filtrate after ultrasonic treatment, and therefore their fates should be investigated.  相似文献   

3.
Perfluorooctanoic acid (C7F15COOH, PFOA) is an aqueous anionic surfactant and a persistent organic pollutant. It can be easily adsorbed onto the bubble-water interface and both mineralized and degraded by ultrasonic (US) cavitation at room temperature. The aim of this study is to investigate whether the effect of US on the degradation of PFOA in solution can be enhanced by the addition of surfactant. To achieve this aim, we first investigated the addition of a cationic (hexadecyl trimethyl ammonium bromide, CTAB), a nonionic (octyl phenol ethoxylate, TritonX-100), and an anionic (sodium dodecyl sulfate, SDS) surfactant. We found the addition of CTAB to have increased the degradation rate the most, followed by TritonX-100. SDS inhibited the degradation rate. We then conducted further experiments characterizing the removal efficiency of CTAB at varying surfactant concentrations and solution pHs. The removal efficiency of PFOA increased with CTAB concentration, with the efficiency reaching 79% after 120 min at 25 °C with a 0.12 mM CTAB dose.  相似文献   

4.
Based on the cure characteristics of the Natural Rubber/Sulfur/N–t–butylbenzothiazole– 2–sulfenamide (NR/S/TBBS) system, a kinetic model with induction, curing, and overcure periods was chosen to simulate the cure reaction of this system. Cure-curves reflecting the development of torque were recorded as a function of cure time for NR compounds by a rubber processing analyzer. The cure curves were then non-linear fitted. The results show that the simulated curves fit well with the experimental curves. Rate constant K 2 for formation of activated crosslink precursors is much higher than rate constant K 6 for crosslink degradation under the same cure condition. Reaction activation energy E 2 and E 6 calculated from K 2 and K 6 through the Arrhenius equation showed that E 6 is higher than E 2. The increase of sulfur dosage led to the decrease of E 6 and E 2, but E 6 decreased more evidently.  相似文献   

5.
In this study, novel nanocomposites (NCs) of aromatic polyamide (PA) and surface modified ZnO nanoparticle with s-triazine heterocyclic ring was introduced for efficient removal of toxic hexavalent chromium (VI) from aqueous solution. The surface of ZnO nanoparticle was modified by s-triazine core silane coupling agent (ZnO-TSC) and PA/ZnO-TSC NCs with different amount of ZnO-TSC nanoparticles (0, 5, 10 and 15 wt%) were prepared by ultrasonic irradiation. The synthesized PA/ZnO-TSC NCs were characterized by FT-IR, XRD, FE-SEM, TEM and TGA methods. TEM images showed that ZnO nanoparticles were dispersed homogeneously in the polymer matrix. The adsorption experiments were carried out in batch mode to optimize various parameters like contact time, pH and concentration of metal ion that influence the adsorption rate. The maximum uptakes of Cr(VI) at pH 4.0 was 72%, 81%, 89% and 91% for pure PA, NC5%, NC10% and NC15%, respectively. The kinetic of adsorption was investigated and the pseudo second-order model is an appropriate model for interpretation of adsorption mechanism of Cr(VI) ions.  相似文献   

6.
In this study, scallop mantle protein was treated by ultrasound at different powers, and then analyzed by ANS fluorescent probes, circular dichroism spectroscopy, endogenous fluorescence spectrum, DNTB colorimetry and in-vitro digestion model to elucidate the structure–function relationship. The results indicated that ultrasound can significantly affect the secondary structure of scallop mantle protein like enhancing hydrophobicity, lowering the particle size, increasing the relative contents of α-helix and decreasing contents of β-pleated sheet, β-turn and random coil, as well as altering intrinsic fluorescence intensity with blue shift of maximum fluorescence peak. But ultrasound had no effect on its primary structure. Moreover, the functions of scallop mantle protein were regulated by modifying its structures by ultrasound. Specifically, the protein had the highest performance in foaming property and in-vitro digestibility under ultrasonic power of 100 W, oil binding capacity under 100 W, water binding capacity under 300 W, solubility and emulsification capacity under 400 W, and emulsion stability under 600 W. These results prove ultrasonic treatment has the potential to effectively improve functional properties and quality of scallop mantle protein, benefiting in comprehensive utilization of scallop mantles.  相似文献   

7.
激光极化的12 9Xe核具有极高的非平衡极化度和长的弛豫时间 ,这一特点使得它能够极化转移增强液体、固体或者固体表面分子中原子核自旋极化。因而 ,提高了它们的核磁共振探测灵敏度和扩展了在材料和表面科学研究中的应用。综述激光极化12 9Xe核与其它分子中原子核之间的极化转移研究与进展 ,介绍相关物理机制和参数的测量。  相似文献   

8.
Abstract

Anoxic sediment surfaces coloured black by iron monosulfides (“black spots”) evolve in tidal sandflats of the Wadden Sea (southern North Sea) as a result of the degradation of buried organic matter. To follow the short- and long-term effects of organic matter burial on pore water and sediment isotopic biogeochemistry, formation of artificial black spots was initiated on the Groninger Plate (site RP63) in the backbarrier tidal flats of Spiekeroog island. Changes in concentrations (DOC, TA, TOC, sulfate, sulfide, TRS, Fe) and isotopic compositions (sulfate, sulfide, TRS, pyrite, TOC) were followed for up to 12 months and compared to reference areas. 13°C ratios of TOC clearly mirror the early diagenetic degradation of organic matter. At least temporarily closed system sulfate reduction is inferred for the artificial black spot from the variation of sulfate concentrations and stable sulfur isotope partitioning, In the interstitial waters of the black spot, 34S/32S values of coexisting dissolved sulfate and sulfide yield fractionation degrees between ?5 and ?25%. On the reference area, 34S/32S are fractionated by ?32 to ?42% as calculated from the isotope composition of solid phase reduced sulfur and pore water sulfate. Sulfur isotope fractionation seems to increase with decreasing sulfate reduction rate. Limiting factor seems to be the availability of DOC. Between the pyrite pool and the dissolved sulfide in the black spot, no significant isotope exchange is observed within 12 months.  相似文献   

9.
Y. Wang 《Applied Surface Science》2006,252(23):8096-8101
Using LiNO3 and Mn(Ac)2 as raw materials, ultrasonic spray deposition (USD) technique was used to fabricate LiMn2O4 films on platinum substrate at different substrate temperatures from 310 to 390 °C. The prepared thick films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical performance of the USD-derived films was also evaluated with LiMn2O4/Li cells. It is found that all of the LiMn2O4 films are porous and composed of orderly oriented columnar particles. The substrate temperature affects the fine microstructure of the columnar particles. The film prepared at 360 °C substrate temperature give rise to best electrochemical behavior.  相似文献   

10.
The mechanism of KrF-excimer-laser cleaning of Si(100) surfaces was studied by Auger Electron Spectroscopy (AES) and Low-Energy Electron Diffraction (LEED) spectroscopy. The dependence of the cleaning efficiency on the laser fluence was investigated by using a mildly focused laser beam and carefully measuring the energy density distribution of the laser spot impinging on the sample. These values were compared with the AES spectra measured in different points of the irradiated area and with the morphology observed by optical microscopy. Samples as received from the manufacturer were first investigated. It was found that desorption of weakly bonded organic adsorbates occurs at energy densities as low as 0.3 J/cm2, whereas significant oxide removal takes place only at an energy density above 0.8 J/cm2, which produces damaged surface morphologies. The experimental findings, in agreement with the temperatures calculated for the laser-induced Si heating, indicated that a large fraction of the oxide film is dissolved in the molten silicon, leading to oxygen concentration below the AES detection limit only when the melted depth was of the order of several hundred nanometers. Atomically clean, damage-free Si(100) surfaces were obtained after irradiation of samples pre-etched for 1 min in a HF: H2O (5%) solution, which had only a thin SiO x (x < 2) layer and F, C and O containing adsorbed species. Complete contaminant elimination was achieved in this case with 15 pulses at 0.8 J/cm2 without any damaging of the surface.  相似文献   

11.
Etching of carbon contaminations from the GaAs(1 0 0) surface by irradiating with atomic hydrogen, which is one of the key reactions to promote high-quality thin films growth by molecular beam epitaxy (MBE), has been investigated by mass spectrometry (MS), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It is shown that during the cleaning process at room temperature a total reduction of the Auger carbon signal, accompanied by desorption of methane as major reaction product, can be observed. The reaction pathways as well as the processes responsible for the observed carbon removal are discussed in detail to give a support for etching and growth quality enhancement not only in thin films epitaxy but in all atomic hydrogen promoted gas-phase III-V semiconductor processes.  相似文献   

12.
A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by the hydrothermal-assisted surface imprinting technique using Cd2+ as the template, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AAAPTS) as the functional monomer, and epichlorohydrin as the cross-linking agent (IIP-AAAPTS/SiO2) for the selective removal of Cd2+ from aqueous solution, and was characterized by FTIR, SEM, nitrogen adsorption and the static adsorption-desorption experiment method. The specific surface area of the IIP-AAAPTS/SiO2 sorbents was found to be 149 m2 g−1. The results showed that the maximum static adsorption capacities of IIP-AAAPTS/SiO2 sorbents by hydrothermal heating method and by the conventional heating method were 57.4 and 31.6 mg g−1, respectively. The IIP-AAAPTS/SiO2 sorbents offered a fast kinetics for the adsorption and desorption of Cd(II). The relative selectivity coefficients of IIP-AAAPTS/SiO2 sorbents for Cd2+/Co2+, Cd2+/Ni2+, Cd2+/Zn2+, Cd2+/Pb2+ and Cd2+/Cu2+ were 30.68, 14.02, 3.00, 3.12 and 6.17, respectively. IIP-AAAPTS/SiO2 sorbents had a substantial binding capacity in the range of pH 4-8 and could be used repeatedly. Equilibrium data fitted perfectly with Langmuir isotherm model compared to Freundlich isotherm model. Kinetic studies indicated that adsorption followed a pseudo-second-order model. Negative values of ΔG° indicated spontaneous adsorption and the degree of spontaneity of the reaction increased with increasing temperature. ΔH° of 26.13 kJ mol−1 due to the adsorption of Cd2+ on the IIP-AAAPTS/SiO2 sorbents indicated that the adsorption was endothermic in the experimental temperature range.  相似文献   

13.
Auger electron-photoion coincidence (AEPICO) spectroscopy, which has been recently developed and proved to be a very powerful technique for investigating the dynamics of desorption induced by the core-level excitation, is applied to the investigation of Auger-stimulated ion desorption from the chemisorbed-water-Si(100) surface induced by O 1s excitation. It is shown that the fast relaxation of the excited state with a core hole and an excited electron takes place before the core hole decay, and that the desorption yield is enhanced by the shake-up (and/or shake-off) excitation. The relative cross-section for Auger-stimulated ion desorption is estimated, and is shown to increase as holes are created at deeper levels of the valence bands as the final state of the Auger decay. A comparison is also made with condensed H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号