首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally the community of scientists involved with ultrasound has been divided broadly into those who use it as a measurement device with no effect on the medium (high frequency low power ultrasound e.g. non-destructive testing) and those who use it to produce physical or chemical effects in a medium (higher power low frequency ultrasound e.g. sonochemistry). Divisions also exist within the broad spectrum of those involved with the latter. In the early days of sonochemistry this did not prove to be a major problem, the subject was new and the field was expanding within the chemistry community. However at a point some years ago Jean-Louis Luche made the very important observation that sonochemistry applications could be subdivided into reactions which were the result of "true" and "false" effects [Synthetic Organic Chemistry by J.-L. Luche, 1998, p. 376]. Essentially these terms referred to real chemical effects induced by cavitation and those effects that could be mainly ascribed to the mechanical impact of bubble collapse. These mechanical effects have not held the interest of synthetic chemists as much as the so-called true ones but nevertheless they are certainly important in areas such as processing. In this paper I will attempt to show that there are links that can be made across many of the ultrasound "disciplines" and that these links can only serve to strengthen research in the general area of power ultrasound. If research on power ultrasound is strong then research into "pure" sonochemistry will also flourish and "false" sonochemistry will be born again as a significant research area.  相似文献   

2.
声化学新发展——纳米材料的超声制备   总被引:11,自引:0,他引:11  
张颖  林书玉  房喻 《物理》2002,31(2):80-83
声空化所引发的特殊的物理,化学环境为制备具有特殊性能的新型材料提供了一条重要的途径,近年来,声化学处理已成为制备纳米材料的一种十分有效的技术,文章综合介绍了超声法制备纳米材料的主要类型,其中包括超声声解法,声化学还原法,超声共沉淀法,超声微乳液法等,并着重阐述了超声的作用原理和各种方法的特点。  相似文献   

3.
《Ultrasonics》1986,24(5):245-253
A review is presented giving details of the use and effects of ultrasound chemical synthesis. This paper is designed to introduce the reader to the field of sonochemistry as applied to chemical synthesis and more details of the mechanisms and theories of sonochemistry will be given in a future special issue of Ultrasonics.  相似文献   

4.
胡松青  李琳  陈玲 《应用声学》2005,24(5):323-328
采用不同电功率的超声波处理了聚乙二醇(PEG6000)溶液。凝胶渗透色谱(GPC)分析超声处理后的PEG溶液发现,当超声电功率超过250W时,PEG分子量随超声波作用强度的增大而减少,随超声波作用时间的延长而增大;在电功率超过250W超声波作用下,傅立叶红外光谱(FT-IR)分析表明,组成PEG的单体没有明显改变,但是,羟基含量分析表明,PEG固体样品中的羟基含量有所减少。结合实验结果,根据高分子化学、有机化学和超声化学中相关理论对PEG超声化学反应机理进行了探讨,认为:当超声波作用于PEG溶液时,同时存在有PEG的缩水聚合反应和自由基降解反应,当频率为20-25kHz、电功率为250-600W的超声作用于PEG6000溶液时,缩水聚合反应占主导地位。  相似文献   

5.
In materials science, sonochemistry is mostly used for the fabrication of nanomaterials, but it has also been used for the polymerization of monomers. The current review is aimed at introducing a new application of sonochemistry to materials science, i.e., the doping of nanoparticles into polymers and ceramic bodies. The introduction will present a short overview of sonochemistry, and will outline the advantages of sonochemistry as a tool for fabricating nanomaterials.  相似文献   

6.
Using sonochemistry for the fabrication of nanomaterials   总被引:14,自引:0,他引:14  
One of the reasons for the huge interest in nanomaterials originated because of the prohibitive price that commercial companies have to pay for introducing new materials into the market. Nanotechnology enables these companies to obtain new properties using old and recognized materials by just reducing their particle size. For these known materials no government approval has to be obtained. Thus, the interest in nanomaterials has led to the development of many synthetic methods for their fabrication. Sonochemistry is one of the earliest techniques used to prepare nanosized compounds. Suslick, in his original work, sonicated Fe(CO)5 either as a neat liquid or in a decalin solution and obtained 10-20 nm size amorphous iron nanoparticles. A literature search that was conducted by crossing Sono* and Nanop* has found that this area is expanding almost exponentially. It started with two papers published in 1994, two in 1995, and increased to 59 papers in 2002. A few authors have already reviewed the fields of Sono and Nano. It should be mentioned that in 1996, Suslick et al. published an early review on the nanostructured materials generated by ultrasound radiation. Suslick and Price have also reviewed the application of ultrasound to materials science. This review dealt with nanomaterials, but was not directed specifically to this topic. The review concentrated only on the sonochemistry of transition metal carbonyls and catalytic reactions that involve the nanoparticles resulting from their sonochemical decomposition. Grieser and Ashokkumar have also written a review on a similar topic. A former coworker, Zhu, has recently submitted for publication a review article entitled "Novel Methods for Chemical Preparation of Metal Chalcogenide Nanoparticles" in which he reviews three synthetic methods (sonochemistry, sonoelectrochemistry, and microwave heating) and their application in the synthesis of nanosized metal chalcogenides. Although still unpublished, I myself have recently written a review discussing novel methods (sonochemistry, microwave heating, and sonoelectrochemistry) for making nanosized materials. The current review will: (1) Present the four main advantages that sonochemistry has over other methods related to materials science and nanochemistry; (2) concentrate on the more recent (2003) literature that was not reviewed in the previously-mentioned reviews, and (3) focus on a specific question, such as what is the typical shape of products obtained in sonochemistry? This review will not survey the literature related to sonoelectrochemistry.  相似文献   

7.
High intensity ultrasound was used for the synthesis and simultaneous deposition of TiO2:Fe3O4:Ag nanocomposites on polyester surface providing a feasible route for imparting magnetic and enhanced antibacterial and self-cleaning activities with controllable hydrophilicity/hydrophobicity at low temperature. Synergistic impact of sonochemistry and physical effects of ultrasound originating from implosive collapse of bubbles were responsible for the formation and adsorption of nanomaterials on the fabric surface during ultrasound irradiation. The increase in photocatalytic activity of TiO2 was obtained attributing to the co-operation of iron oxide and silver nanoparticles nucleated on TiO2 surface boosting the electron–hole pair separation and prolonging their recombination rate. The process was further optimized in terms of reagents concentrations including Fe2+/TiO2 and Ag/TiO2 molar ratios using central composite design in order to achieve the best self-cleaning property of the treated fabric. The magnetic measurements indicated the super-paramagnetic behavior of the treated fabric with saturation magnetization of 4.5 (emu/g). Findings suggest the potential of the proposed facial method in producing an intelligent fabric with durable multi-functional activities that can be suitable for various applications including medical, military, bio-separation, bio-sensors, magneto graphic printing, magnetic screens and magnetic filters.  相似文献   

8.
Sonochemical and photochemical oxidation of organic matter   总被引:35,自引:0,他引:35  
Recent developments in sonochemistry have led us to study its use to treat water and wastewater. The effects of ultrasound wave in hydrophilic chemical oxidations are mainly due to hydroxyl radical production during the cavitation-induced water decomposition. Currently, the sonochemical destruction of aromatic compounds in water solution is obtained with low rates. The aim of this work is to evaluate the efficiency of the sonochemical effect in conjunction with a photochemical irradiation. Taking phenol as an example, the combined action of sonochemistry and photochemistry has been considered in a ‘sonuv’ reactor. An important enhancement of the degradation rate of phenol has been observed. It may be the result of three different oxidative processes: direct photochemical action, high frequency sonochemistry and reaction with ozone (produced by UV irradiation of air). The process has been successfully tested to lower the chemical oxygen demand of a municipal wastewater.  相似文献   

9.
The uses of ultrasound in food technology   总被引:23,自引:0,他引:23  
The same physical and mechanical effects which have been utilised in sonochemistry, i.e. strong shear forces, particle fragmentation, increased mass and heat transfer, nucleation of seedling, have been applied to food processing. Examples are quoted from various applications where power ultrasound has been used to influence the development of living cells, improve sterilisation and effect enzyme activity. Typically ultrasound can be used as a processing aid in extraction, crystallisation, freezing, emulsification, filtration and drying.  相似文献   

10.
Numerical simulations for sonochemistry are reviewed including single-bubble sonochemistry, influence of ultrasonic frequency and bubble size, acoustic field, and sonochemical synthesis of nanoparticles. The theoretical model of bubble dynamics including the effect of non-equilibrium chemical reactions inside a bubble has been validated from the study of single-bubble sonochemistry. By the numerical simulations, it has been clarified that there is an optimum bubble temperature for the production of oxidants inside an air bubble such as OH radicals and H2O2 because at higher temperature oxidants are strongly consumed inside a bubble by oxidizing nitrogen. Unsolved problems are also discussed.  相似文献   

11.
Design requirements for industrial size ultrasound bath for textile treatments have been determined. For this purpose, effects of sound pressure level, bath temperature, bath volume, textile material type and hydrophility degree of fabric were examined extensively. Finite element analysis (FEA) was used to investigate spacing and alignment of the ultrasound source transducers to reach effective and homogenous acoustic pressure distribution in the bath. It was found that textile material type, bath temperature and volume led to significant changes at sound pressure level. These parameters should be taken into consideration in designing of industrial size ultrasound bath for textile treatments. Besides, wettability of textiles is highly dependent to the distance from the transducers.  相似文献   

12.
Ultrasounds are widely used at industrial scale for cleaning of mechanical pieces for example. Potential applications exist for finishing of textiles. This work aimed to improve traditional textile finishing processes thanks to ultrasound. The technical objective was to develop specific applicators of ultrasonic energy which could be adapted on jigger, a widespread textile finishing machine. Laboratory studies have allowed to define the conditions for application of ultrasounds and check their effects on fibre structure, validated by trials in dynamic conditions. Ultrasound technology makes it possible to intensify the phenomena of diffusion and washing by the effect of cavitation and improves effectiveness of traditional washing treatments. Industrial ultrasound processes need further optimisation on industrial machines.  相似文献   

13.
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.  相似文献   

14.
Catalysis covers almost all the chemical reactions or processes aiming for many applications. Sonochemistry has emerged in designing and developing the synthesis of nano-structured materials, and the latest progress mainly focuses on the synthetic strategies, product properties as well as catalytic applications. This current review simply presents the sonochemical effects under ultrasound irradiation, roughly describes the ultrasound-synthesized inorganic nano-materials, and highlights the sonochemistry applications in the inorganics-based catalysis processes including reduction, oxidation, degradation, polymerization, etc. Or all in all, the review hopes to provide an integrated understanding of sonochemistry, emphasize the great significance of ultrasound-assisted synthesis in structured materials as a unique strategy, and broaden the updated applications of ultrasound irradiation in the catalysis fields.  相似文献   

15.
Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.  相似文献   

16.
针对现有超声协同臭氧降解农药的研究多集中在20kHz至50kHz的频段内,而效果一直不够理想,以及目前民用的超声协同臭氧蔬果药残降解装置较少的问题,设计了一种160kHz超声协同臭氧蔬果药残降解仪。超声波发生器采用SG3525芯片驱动半桥式功率放大电路,并运用小范围扫频技术。臭氧发生器使用市场上量产的小型臭氧机。本文利用该降解仪进行了乙酰甲胺磷农药降解实验,对160kHz超声波协同臭氧的农药降解效果进行了初步研究,结果表明仪器对降解乙酰甲胺磷有效。  相似文献   

17.
One of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, expenses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as “ultrasound”. Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.  相似文献   

18.
Relatively little is known about the effects of pulsed ultrasound on the facilitation of chemical reactivity. Previous studies have indicated that sonochemistry using pulses is generally less effective than continuous ultrasonic irradiation. However, the pulse trains employed were such that the peak power of the pulses was the same as the maximum power used in continuous irradiation. As a result, less acoustic energy was transmitted to the solutions over the same period of time. The effectiveness of ultrasound when the pulse is adjusted so that the same amount of acoustic energy is input compared to continuous irradiation over a given time has not been previously explored. In this study we have embarked on an examination of the efficacy of power-modulated pulsed (PMP) sonochemistry. Specifically, we have explored the effects of pulse type and pulse frequency on the oxidation of potassium iodide and the degradation of acid orange, a common industrial colorant. A rate increase by a factor of three was observed compared with continuous irradiation under conditions of equivalent acoustic input power.  相似文献   

19.
B. Sun  N. Pan 《哲学杂志》2013,93(34):5461-5484
Z-transform theory was applied to several three-dimensional (3D) textile structural composites, including an angle-interlock woven composite, a multilayer multi-axial warp knitted composite and a 4-step braided composite, to characterize their system dynamic behaviour in the frequency domain. More specifically, the analysis focused on the relationship between the compressive load and the system response under static (strain rate 0.001?s?1) and impulsive (strain rate up to 2700?s?1) strain along both the in-plane and out-of-plane directions, respectively. The high strain rate compressions were tested using a split Hopkinson pressure bar apparatus, and the input and output (the stress–strain curve) of the test specimen was obtained by recording the signals using a computer for further analysis. Z-transform was then used to analyze the dynamic response and stability of the composites of different preform structures and at various loading conditions. This is the first such attempt to study the compression behaviour of 3D textile structural composites at various strain rates in the frequency domain in order to reveal their mechanical behaviour and features of the materials from a new perspective.  相似文献   

20.
一维纳米材料以其特殊的物理和化学性质成为了现在纳米材料研究的热点.目前国内对一维纳米材料研究主要体现在两方面:一是一维纳米材料的制备;二是纳米材料的功能器件研究,如光电探测器、气敏探测器等.本文综述了一维Ga2O3纳米材料的几种常用的制备方法,包括工艺参数及生长机理,并简单介绍了Ga2O3光电导探测器的工作原理及最近的研究成果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号