首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The first 16 valence electron [bis(NHC)](silylene)Ni0 complex 1 , [(TMSL)ClSi:→Ni(NHC)2], bearing the acyclic amido‐chlorosilylene (TMSL)ClSi: (TMSL=N(SiMe3)Dipp; Dipp=2,6‐Pri2C6H4) and two NHC ligands (N‐heterocyclic carbene=:C[(Pri)NC(Me)]2) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi‐NiH complex 2 . Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene‐coordinated (chloro)(silyl)nickel(II) complex 3 , {[cat(TMSL)Si](Cl)Ni←:BH(NHC)2}, via the cleavage of two B−O bonds and simultaneous formation of two Si−O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B−O bonds.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The role of low concentrations of carbon complexes in hydrocarbon decomposition over transition metal surfaces has been a topic of much debate over the past decades. It is also a mystery as to whether or not electric fields can enhance hydrocarbon conversion in an electrochemical device at lower than normal reforming temperatures. To provide a “bottom‐up” fundamental insight, C−H bond cleavage in methane over Ni‐based catalysts was investigated. Our theoretical results show that the presence of carbon or carbide‐like species at the interface between the Ni cluster and its metal‐oxide support, as well as the application of an external positive electric field, can significantly increase the Ni oxidation state. Furthermore, the first C−H bond cleavage in methane is favored as the local oxidation state of Ni increases. Thus, the presence of a low concentration of carbon species, or the addition of a positive electric field will improve the hydrocarbon activation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号